М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
saralis
saralis
18.10.2022 10:40 •  Геометрия

Am- высота прямоугольного треугольник, проведенная к его гипотенузе. периметр квадрата amde вдвое больше гипотенузе. найти острые углы прямоугольного треугольник.

2)abcd-квадрат. на сторонах ab и bc отмечены точки n и m так, что bm =bn, опушен перпендикуляр bo на mc. найти угол nod.
5 и 6 , решение напишите на листе с рисунком и скиньте фото как ответ​

👇
Ответ:
Zaika20051
Zaika20051
18.10.2022

5) Периметр квадрата со стороной AM равен 4AM.

4AM=2BC <=> AM=BC/2

Отрезок из прямого угла к гипотенузе, равный ее половине - медиана.

AM - медиана и высота, следовательно △ABC - равнобедренный, острые углы 45.

6) Продолжим перпендикуляр BO до пересечения с AD в точке P.

OBM= 90-OMB =BCM

△ABP=△BCM (по катету и острому углу)

AP=BM=BN => PD=NC

PNCD - прямоугольник, диагонали являются диаметрами описанной окружности.

COP=90, точка O лежит на окружности с диаметром CP.

Вписанный угол NOD опирается на диаметр ND, NOD=90


Am- высота прямоугольного треугольник, проведенная к его гипотенузе. периметр квадрата amde вдвое бо
4,7(38 оценок)
Открыть все ответы
Ответ:
natalinatark
natalinatark
18.10.2022
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании, 
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, 
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
4,4(25 оценок)
Ответ:
Яна13022016
Яна13022016
18.10.2022
ответ:

1.Треуго́льник— геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.

2.Периметр- это сумма всех сторон.

3. Треугольники называются равными, если у них соответствующие стороны равны.

4.Теорема-это утверждение, которое было доказано на основе ранее установленных утверждений: других теорем и общепринятых утверждений, аксиом. Другими словами, теорема - это математическое утверждение, которое необходимо доказать.

5.Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

6.Отрезок, один конец которого данная точка, а другой конец лежит на прямой, образующий с прямой угол 90°, называется перпендикуляром, проведенным из данной точки к прямой.

7.Через данную точку к данной прямой можно провести перпендикуляр и только один.

8.Медиа́на треугольника ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

9.Треугольник имеет три медианы

10.Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.

(как ещё говорят- биссекртриса- это такая крыса которая делит угол попалам)

11.Треугольник имеет 3 биссекртисы.

12.Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону называется высотой треугольника.

13.Треугольник имеет 3 высоты.

14.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием.

15.Треугольник у которого все стороны равны между собой, называется равносторонним

16. В равнобедренном треугольнике углы при основании равны.

17.В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

18.Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.

19.Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны

20.Определение – это первичное описание объекта

21.Радиус окружности - равные отрезки, соединяющие центр с точками окружности. Хорда - отрезок, соединяющий любые две точки окружности. Диаметр окружности - хорда, проходящая через центр. ОКРУЖНОСТЬ - геометрическое место точек, равноудалённых от одной точки, называемой ЦЕНТРОМ

22.Например, дан угол с вершиной А и луч OM. Проведем окружность произвольного радиу с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках B и C. Затем проведем окружность того же радиуса с центром в начале данного луча OM. Она пересекает луч в точке D. После этого построим окружность с центром D, радиус которой равен BC. Окружности с центрами O и D пересекаются в двух точка. Одну из этих точек обозначим буквой E. Угол MOE - искомый.

23.Например, если Вам нужно построить биссектрису угла, равного 78 градусов, то нужно приложить транспортир к одной из сторон этого угла, отметить точку возле метки 78 / 2 = 39 градусов и провести луч из вершины заданного угла через полученную точку. Это и будет биссектриса угла 78 градусов.

24.1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.

2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.

3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.

Прямая b - искомый перпендикуляр к прямой а.

25.Надо построить из каждой из вершин отрезка окружности одинакового радиуса (причем радиус должен быть меньше самого отрезка и больше половины отрезка (приблизительно на глаз)). Эти окружности пересекаться в двух точках. линия которая проходит через обе эти точки пересечет данный отрезок в середине.

4,5(99 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ