2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
раз п/угном треугольнике угол=45градусов(например угол АСВ), значит он равнобедренный(по приз.);
треугольник АВС р/б, следовательно, катеты равны(Пусть это будет катет АВ=ВС).
По теореме Пифагора АС^2=АВ^2 + ВС^2;
АС^2= 2АВ^2;
АВ = корень кв из(АС^2/2);
Катет АВ = 3 смОТвет: катеты равны 3 см