Угол А - 180-90-60=30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. АВ - гипотенуза, ВС - катет против угла 30°. АВ=25*2=50 см.
Имеем равнобедренный треугольник АВС, АВ = ВС = 10. Медиана АМ к стороне ВС равна √153. Медиана к основанию - это высота ВД.
Медиана разбивает треугольник на 2 равновеликих по площади. Тогда S(АВС) = 2S(АВМ). Площадь треугольника АВМ находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). Полупериметр р = (10+5+√153)/2 = (15+√153)/2 ≈ 13,684658. Подставив данные, получаем S(АВМ) = 24. Тогда S(АВС) = 2*24 = 48.
Обозначим АД - половину стороны АС - за х. Высота ВД это Н = √(10² - х²) = √(100 - х²).
Тогда площадь треугольника АВС равна: S(АВС) = (1/2)*2x*H = х√(100-х²) = 48. Возведём обе части в квадрат. х²(100-х²) = 48². Заменим х² на у. Получаем квадратное уравнение: у² - 100у + 2304 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант: D=(-100)^2-4*1*2304=10000-4*2304=10000-9216=784;Дискриминант больше 0, уравнение имеет 2 корня: y_1=(√784-(-100))/(2*1)=(28-(-100))/2=(28+100)/2=128/2=64;y_2=(-√784-(-100))/(2*1)=(-28-(-100))/2=(-28+100)/2=72/2=36.
Отсюда находим 2 значения х = 8 и х = 6. Но второй ответ не принимаем, так как медиана АМ получается равной √97.
ответ: длина медианы, проведенной к ОСНОВАНИЮ треугольника, равна √(100-64) = √36 = 6.
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2