мде)
Дано: треугольник ABC, AB = 9 см, AC = 40 см
Найти: BC, углы B и C.
Решение: 1) BC^2 = AB^2 + AC^2 - по теореме Пифагора
BC = кореньквадратныйиз(9^2 + 40^2) = кореньквадратныйиз(81 + 1600) = корень квадратный из(1681) = 41
2) Углы можно найти многими Так например:
sin B = AC / BC = 40 / 41 = 0,9756
sin C = AB / BC = 9 / 41 = 0,2195
Угол B = 77.32
Угол С = 12.68
Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
32 - 100
x - 60
x = 19,2, округляем = 19
68 - 100
x - 60
x = 40,8 , округляем = 41
Получаем такие значения углов
B = 77 градусов 19 минут = 77°19'
C = 12 градусов 41 минута = 12°41'
=)
1)34
2)86
3)28
4)45 60 75
Объяснение:
1) Сумма углов треугольника 180°. Отнимаем от 180 сумму 2 извесных углов(57 и 89) и получаем 34°
2) У равнобедренных треугольников углы при основании оддинаковые. Тоесть 180-(47+47)= 86°
3)Угол противолежащий основанию это угол при вершине. Если от 180 отнять этот угол то получиться 56, это сумма 2 углов при основании. Делим на 2, так как они оддинаковые и получаем 28°
4) Берем 3:4:5 как х
3х+4х+5х=180° потому что сумма углов 180
12х=180
х=180:12
х=15
15*3=45- первый угол
15*4= 60- второй угол
15*5=75- третий угол
Надеюсь все понятно
Решим задачу так:
1. Построим прямую а и точку А на ней.
2. Из точки А построим угол, равный известному нам, и под этим углом прямую b
3. Построим прямую д, паралелльную b, на расстоянии, равном высоте h из условий задачи. Обозначим точку В пересечения прямых b и д.
4. Из точки В построим известный нам угол "в другую сторону" (т.е. не параллельно прямой b) и прямую с под этим углом. Обозначим точку С пересечения прямых
б и с.
Ура, треугольник АВС построен.
Для доказательства построим из точки В отрезок ВЕ перпендикулярный отрезку АС. Поскольку точка В лежит на прямой д, параллельной отрезку АС и находится на расстоянии h, значит ВЕ является высотой, построенной к боковой стороне и равно h