Дам рисунок и подробный ход решения. Вычислений очень много, большую часть вычислила, остальное сделаете самостоятельно.
Задача сводится к нахождению полной поверхности усеченной пирамиды.
Основания правильной усеченной пирамиды - правильные треугольники.
Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции.
Полная поверхность усеченной пирамиды равна сумме площадей её оснований и площади её боковой поверхности.
Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему. Апофема здесь - высота трапеций, образующих боковые грани.
Площади оснований - площади правильных треугольников.
1) Найти сторону оснований.
Сторона каждого основания - это сторона вписанного правильного треугольника в две окружности диаметром 2 и 5 соответственно.
Сторону правильного треугольника а можно вывести из формулы радиуса описанной окружности:
R=(a√3):3,
3R=a√3
а=3R:√3=3R*√3:√3*√3=R*√3
Сторона меньшего треугольника =2√3
2) найти площади оснований усеченной пирамиды.
Меньшая площадь по формуле S=1/4 a²√3
S=1/4* 2²*√3=1/4* 4√3=√3
Сторона большего треугольника =5√3
Cоответственно площадь большего основания усеченной пирамиды равна
S=1/4 5²√3=1/4* 25 √3
Высота So отсеченной части конуса (от вершины S до верхнего основания усеченной пирамиды) находится из подобных треугольников, образованных образующей, высотой конуса и радиусов его основания и сечения
--------------
Найдите апофему, полупериметр оснований трапеций, затем площадь боковой поверхности и сложите с площадью оснований усеченной пирамиды.
И проверьте на всякий случай мои вычисления. Ошибиться в такой задаче немудрено.
ответ: 8√2π см
Объяснение:
О - центр сферы, ОА = 16 / 2 = 8 см - радиус сферы.
Сечение сферы - окружность, С - центр сечения, СА - радиус сечения.
Длина линии пересечения сферы плоскостью - длина этой окружности.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен плоскости сечения, тогда СА - проекция наклонной ОА на плоскость сечения, значит угол между радиусом и его проекцией на плоскость ∠ОАС = 45°.
ΔОСА: ∠ОСА = 90°,
cos 45° = CA / OA
CA = OA · cos 45° = 8 · √2/2 = 4√2 см
Длина окружности сечения:
C = 2π · CA = 2π · 4√2 = 8√2π см