М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ALEX2000100
ALEX2000100
14.04.2021 12:56 •  Геометрия

Радиус основания конуса равен 6 см., а образующая наклонена к плоскости основания под углом 30 градусов. найдите: а) площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми 60 б) площадь боковой поверхности

👇
Ответ:
vinokurovbob
vinokurovbob
14.04.2021
  
Образующая  конуса  АВ=ВС=(ОВ:cos 30°)=6:(√3:2)
Домножив числитель и знаменатель дроби на √3, получим 
АВ=6*2*√3):(√3*√3)=4√3    

а) площадь сечения = площади равностороннего треугольника со стороной, равной  образующей (угол между ними 60°, значит, и остальные, при основании сечения,тоже равны 60°)

S правильного тр-ка = (а²√3):4

S сечения= (4√3)²*√3):4=12√3

б) S бок=π r l=π*6*4√3=24π√3
4,7(3 оценок)
Открыть все ответы
Ответ:
Sasno228666
Sasno228666
14.04.2021

ВС= 6 см; P=15 см; S=5√3 см²; R= 2√3 см.

Объяснение:

Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.

Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

ВС²=АВ²+АС²-2·АВ·АС·sinA;

\begin{gathered}BC^{2} =4^{2} +5^{2} -2\cdot4\cdot 5\cdot cos60^{0} ;BC^{2} =16+25-2\cdot20\cdot \dfrac{1}{2} ;\\BC^{2} =16+25-5;\\BC^{2}=36;\\BC=6.\end{gathered}

BC

2

=4

2

+5

2

−2⋅4⋅5⋅cos60

0

;

BC

2

=16+25−2⋅20⋅

2

1

;

BC

2

=16+25−5;

BC

2

=36;

BC=6.

Тогда ВС= 6 см

Периметр треугольника - сумма длин всех сторон треугольника.

\begin{gathered}P=AB+AC+BC;\\P=4+5+6=15\end{gathered}

P=AB+AC+BC;

P=4+5+6=15

см.

Найдем площадь треугольника по формуле.

\begin{gathered}S=\dfrac{1}{2} \cdot AB\cdot AC\cdot sin60^{0} ;S=\dfrac{1}{2}\cdot 4\cdot 5\cdot \dfrac{\sqrt{3}}{2} =5\sqrt{3}\end{gathered}

S=

2

1

⋅AB⋅AC⋅sin60

0

;

S=

2

1

⋅4⋅5⋅

2

3

=5

3

см².

Радиус окружности, описанной около треугольника определим по формуле.

R=\dfrac{a}{2\cdot sin\alpha }R=

2⋅sinα

a

R=\dfrac{6}{2\cdot sin 60^{0} } =\dfrac{6}{2\cdot\dfrac{\sqrt{3} }{2} } =\dfrac{6}{\sqrt{3} } =\dfrac{6\sqrt{3} }{3} =2\sqrt{3} .R=

2⋅sin60

0

6

=

2⋅

2

3

6

=

3

6

=

3

6

3

=2

3

.

R=2√3 см.

4,6(50 оценок)
Ответ:
AnnaMarkeca91
AnnaMarkeca91
14.04.2021
По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н.
КЕ - диаметр, значит дуга КРЕ=180°. Дуга  КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°.
ответ: 127°
4,5(74 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ