М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
диана27th
диана27th
20.12.2020 18:22 •  Геометрия

Вравнобедренной трапеции боковая сторона равна 10 см , диагональ 17 , а разность оснований . найдите площадь трапеции

👇
Ответ:
makrona123
makrona123
20.12.2020

опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8.
рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15.
дальше. маленькое основание будет равно (15+6)-12=9
площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96

4,6(20 оценок)
Открыть все ответы
Ответ:
FurtiFool
FurtiFool
20.12.2020
Дано:

Четырехугольник ABCD, O - точка пересечения диагоналей,

AD || BC и AC ⊥BD,

M - середина AD, N - середина BC,

AD = 12 и BC = 7   (смотрите рисунок).

Найти:

Длина отрезка MN.

Решение:

Заметим, что O ∈ MN, так как угол MON - развернутый:

∠MON = ∠DOC + (∠DOM + ∠CON) = 90° + (∠OCB + ∠OBC) =

= 90° + 90° = 180°.

Значит, нам достаточно найти длину MO + NO.

Так как треугольник AOD прямоугольный, то медиана MO, проведенная из вершины прямого угла к гипотенузе,  равна половине этой гипотенузы (по свойству медианы прямоугольного треугольника):

MO = AD / 2 = 12 / 2 = 6.

Тоже самое можно сказать и о прямоугольном треугольнике BOC с медианой NO:

NO = BC / 2 = 7 / 2 = 3,5.

Значит:

MO + NO = MN = 6 + 3,5 = 9,5.

ответ:

MN = 9,5 .


Про четырёхугольник ABCD известно, что AD∥BC, AC⊥BD. Чему равна длина отрезка, соединяющего середины
4,4(25 оценок)
Ответ:
Лика1508
Лика1508
20.12.2020
Дано:

Четырехугольник ABCD, O - точка пересечения диагоналей,

AD || BC и AC ⊥BD,

M - середина AD, N - середина BC,

AD = 12 и BC = 7   (смотрите рисунок).

Найти:

Длина отрезка MN.

Решение:

Заметим, что O ∈ MN, так как угол MON - развернутый:

∠MON = ∠DOC + (∠DOM + ∠CON) = 90° + (∠OCB + ∠OBC) =

= 90° + 90° = 180°.

Значит, нам достаточно найти длину MO + NO.

Так как треугольник AOD прямоугольный, то медиана MO, проведенная из вершины прямого угла к гипотенузе,  равна половине этой гипотенузы (по свойству медианы прямоугольного треугольника):

MO = AD / 2 = 12 / 2 = 6.

Тоже самое можно сказать и о прямоугольном треугольнике BOC с медианой NO:

NO = BC / 2 = 7 / 2 = 3,5.

Значит:

MO + NO = MN = 6 + 3,5 = 9,5.

ответ:

MN = 9,5 .


Про четырёхугольник ABCD известно, что AD∥BC, AC⊥BD. Чему равна длина отрезка, соединяющего середины
4,4(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ