Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
Дано :
∠1 = 70°.
∠2 = 100°.
∠3 = 80°.
Найти :
∠α = ?
Рассмотрим внутренние односторонние ∠3 и ∠2 при пересечении прямых АВ и CD секущей АС.
Если при пересечении двух прямых секущей сумма двух внутренних односторонних углов равна 180°, то эти прямые параллельны.
Так как -
∠3 + ∠2 = 80° + 100°
∠3 + ∠2 = 180°
То по выше сказанному -
АВ ║ CD.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.
Рассмотрим эти же прямые, но только тогда, когда они пересечены секущей BD.
По выше сказанному -
∠1 = ∠α
∠1 = 70°.
70°.
1) h*pi*r*2 = 6 * 3,14 * 5 * 2 = 188,4 квадратных дм
2)3/4 * pi * r^3 = 3/4 * 3,14 * 125 = 294.375 квадратных дм