У прямого параллелепипеда в основании параллелограмм, Боковые ребра перпендикулярны плоскости основания S₁(диаг. сечения)=d₁·H S₂(диаг. сечения)=d₂·H Cумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон d₁²+d₂²=2·(a²+b²)
Имеем систему трех уравнений с тремя переменными d₁·H=112 ⇒ d₁=112/H d₂·H=144 ⇒ d₂=144/H d₁²+d₂²=2·(8²+14²)
(112/H)²+(144/H)²=520
520 H²=112²+144²
520 H²=12544+20736
520H²=33280
H²=64
H=8
d₁=112/8=14 d₂=144/8=18
Площадь основания - площадь параллелограмма со сторонами 8 и 14 и диагоналями 14 и 18
Диагональ длиной 14 разбивает параллелограмм на два равнобедренных треугольника со сторонами 8; 14; 14 Высоту такого треугольника, проведенную к стороне 8 найдем по теореме Пифагора h=√(14²-4²)=√(196-16)=√180=6√5 S(параллелограмма)=8·6√5=48√5
S(полн)=S(бок)+2S(осн)=P(осн)·Н+2·48√5=2·(8+14)·8+96√5=352+96√5 ( кв. см)
Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
(х-а)²+(у-в)²=R²- уравнение окружности где (а;в)-координаты центра окружности R--радиус (х-2)²+(у-3)²=4² (х-2)²+(у-3)²=16 начало координат имеет координаты О(0;0) (х-0)²+(у-0)²=(5/2)² x²+y²=25/4 (R=5/2) X²+y²=25 (R=5) 2. C x=(2+4)÷2 y=(7+5)÷2 x=3 y=6 C (3 ; 6) координаты середины отрезка находятся за формулой х=(х1+х2)÷2; у=(у1+у2)÷2 где (х1; у1) (х2;у2) координаты конца отрезка АВ ((4-2); (7-5)) АВ (2;2) АВ²=(4-2)²+(7-5)²=2²+2²=4+4=8 АВ=√8=√4·2=√2²·2=2√2 y=kx+b уравнение прямой если прямая проходит через точки значит ее координаты удовлетворяют уравнение прямой 5=2k+b (×-1) -5=-2k-b 7=4k+b первое уравнение + второе 2=2k k=2/2=1 5=2·1+b b=5-2=3 y=x+3 уравнение прямой которая проходит через точки А и В
S₁(диаг. сечения)=d₁·H
S₂(диаг. сечения)=d₂·H
Cумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
d₁²+d₂²=2·(a²+b²)
Имеем систему трех уравнений с тремя переменными
d₁·H=112 ⇒ d₁=112/H
d₂·H=144 ⇒ d₂=144/H
d₁²+d₂²=2·(8²+14²)
(112/H)²+(144/H)²=520
520 H²=112²+144²
520 H²=12544+20736
520H²=33280
H²=64
H=8
d₁=112/8=14
d₂=144/8=18
Площадь основания - площадь параллелограмма со сторонами 8 и 14 и диагоналями 14 и 18
Диагональ длиной 14 разбивает параллелограмм на два равнобедренных треугольника со сторонами 8; 14; 14
Высоту такого треугольника, проведенную к стороне 8 найдем по теореме Пифагора
h=√(14²-4²)=√(196-16)=√180=6√5
S(параллелограмма)=8·6√5=48√5
S(полн)=S(бок)+2S(осн)=P(осн)·Н+2·48√5=2·(8+14)·8+96√5=352+96√5 ( кв. см)