Решение будет без рисунка, но объяснять буду подробно, так что сделать рисунок самостоятельно будет не сложно. Итак, дана SABC- правильная треугольная пирамида, АВС- основание, правильный треугольник. SH- высота пирамиды, точка О- центр шара который касается всех РЕБЕР нашей пирамиды и принадлежит высоте SН, SO=3, а радиус шара R=√3. Итак, поехали) 1) Проведем радиусы ОР, к точке касания Р со стороной SC и ОК, к точке касания К со стороной АС, по свойству радиуса и касательной они (радиусы и стороны) будут перпендикулярны. 2) Рассмотрим ∆SHC, он прямоугольный, ОР┴SC, SO=3, OP=R=√3, по т. Пифагора SP=√6, ∆SHC~∆SОР (по 3-м углам). 3) Пусть ОН=х, тогда из прямоугольного ∆ОКН, по т. Пифагора НК=√(3-х^2), а значит СН=2√(3-х^2) 4) Из подобия треугольников ∆SHC~∆SОР, составим пропорцию: ОP/HC=SP/SH, √3/(2√(3-х^2))=√6/(x+3), 3/(4(3-х^2))=6/(x+3)^2, 3/(12-4х^2)=6/(x^2+6x+9), 3(x^2+6x+9)=6(12-4х^2), 3x^2+18x+27=72-24х^2, 3x^2+2x-5=0, x= 1, SO=3+1=4
Задача не стоит своих балов, имхо). Красный - высота. K и F - точки касания. AO - расстояние по условию. OF, OK - радиусы. Для очень придирчивых - вся основа решения, т.е. после введения углов, лежит в плоскости AS1S. Из треугольника AOF: a/2=sqrt6. Тогда a=2sqrt6. Это сторона основания. Тогда AH=2sqrt6*sin60*=3sqrt2 S1F=(3sqrt2)/3=sqrt2 OS1=1 угол AOS1=k угол AOK= l угол KOS=b cos(k)=OS1/AO=1/3 cos(l)=OK/AO=sqrt3/3 b=pi-arccosk-arccosl cosb=cos(pi-arccos(k)-arccos(l))= -cos(arccos(k)+arccos(l)) Есть формула подсчета этого: arccos(k)+arccos(l)=arccos(k*l-sqrt(1-k^2)*sqrt(1-l^2)), где k+l >0 Я не буду приводить расчеты, тут все подставляется. cos(b)=(4-sqrt3)/9 = OK/OS. Отсюда находится OS. Вся высота пирамиды = OS+OS1 = (4+8sqrt3)/(4-sqrt3). P.S. sqrt - квадратный корень из
AD=10
H1H2=KM=(BC+AD)/2=8
S=KM*H1H2=8*8=64