Основанием пирамиды является ромб, сторона которого равна 4 см, острый угол равен 45°. все грани пирамиды с плоскостью основания образуют угол, величина которого равна 60°. вычислите объём и площадь боковой поверхности пирамиды. please !
пирамида КАВСД, К-вершина, АВСД-ромб, АВ=ВС=СД=АД=4, уголА=45, КО-высота пирамиды, О-центр вписанной окружности, проводим высоту ВТ на АД, треугольник АВТ прямоугольный, ВТ=АВ*sinA=4*sin45=4*√2/2=2√2, площадь АВСД=АД*ВТ=4*2√2=8√2, проводим радиус ОН перпендикулярный в точке касания на СД, угол КНО=60, ОН=1/2ВТ=2√2/2=√2
проводим апофему КН на СД, треугольник КНО прямоугольный, КН=ОН/cos60=√2/(1/2)=2√2, КО=КН*sin60=2√2*√3/2=√6
площадь боковая=1/2*периметр*КН=1/2*(4*4)*2√2=16√2
Приближается Новый год. 2012 год по восточному календарю — год дракона. В связи с этим моя давняя хорошая подруга и однокурсница преложила написать об этом фрактале — кривой дракона.
Кривая дракона — это кривая без самопересечений, которая определяется рекурсивно. Описать эту кривую можно, задавая поворот налево цифрой

, а поворот направо — цифрой

. Важно, что все повороты совершаются на один и тот же угол! Таким образом, задавая значение

или

на каждом шаге, мы можем задать кривую.
Порядком кривой дракона называется количество звеньев получающейся ломаной. Кривая первого порядка определяется просто как

. Для кривых более высоких порядков справа приписываем
При пересечении двух прямых получается четыре угла . Два из них развернутые и они равны по 180 градусов. Всего сумма 4 углов 360 градусов. Один угол равен 360-305=55 Углы накрест лежащие и они равны. Следовательно два остальных накрест лежащих угла (360-55*2)/2=125 Дано прямые АВ и СК точка О точка пересечения прямых угол АОК =180 (развернутый) АОК =АОС+АОК угол СОК = 180 СОК =СОВ+ВОК АОС+АОК+СОВ=305 ВОК=360-305=55 ВОК=АОС=55 (накрест лежащие) АОК=СОВ=(360-55*2)/2=125 (накрест лежащие)
пирамида КАВСД, К-вершина, АВСД-ромб, АВ=ВС=СД=АД=4, уголА=45, КО-высота пирамиды, О-центр вписанной окружности, проводим высоту ВТ на АД, треугольник АВТ прямоугольный, ВТ=АВ*sinA=4*sin45=4*√2/2=2√2, площадь АВСД=АД*ВТ=4*2√2=8√2, проводим радиус ОН перпендикулярный в точке касания на СД, угол КНО=60, ОН=1/2ВТ=2√2/2=√2
проводим апофему КН на СД, треугольник КНО прямоугольный, КН=ОН/cos60=√2/(1/2)=2√2, КО=КН*sin60=2√2*√3/2=√6
площадь боковая=1/2*периметр*КН=1/2*(4*4)*2√2=16√2
объем=1/3*площадьАВСД*КО=1/3*8√2*√6=16√3/3