В треугольнике АЕD по условию АЕ=ЕD. ∆ АЕD равнобедренный, углы при основании AD равны.
Примем углы при АD равными а.
По свойству внешнего угла треугольника ∠DEB=2a ( т.е. равен сумме внутренних не смежных с ним углов),
Сумма острых углов прямоугольного треугольника 90°. ⇒
В треугольнике BED ∠ В=90°-2а
Из суммы углов треугольника каждый из равных при основании АС углов равнобедренного треугольника АВС равен (180°- АВС):2
∠САВ=(180°-(90°-2а):2=45°+а
∠САВ=угол САD+a⇒
∠САD=CAB-a
Угол СAD=45°+a-a=45°
Сделаем рисунок, обозначим вершины углов трапеции привычнымиАВСД Через центр окружности проведем перпендикулярно к основаниям трапеции диаметр.
Его отрезок МК, заключенный между основаниями трапеции, является еевысотой и делит основания пополам. ( Основания - хорды, перпендикуляр из центра окружности к хорде делит ее пополам).
Соединим центр О с вершинами С и Д.
ОС=ОД=R
Обозначим ОК=х, тогда ОМ =27-х
По т. Пифагора
R²=МС²+ОМ²
R²=КД²+ОК² Приравняем значения радиуса.
МС²+ОМ²=КД²+ОК²
225+(27-х)²=576+х²
54х=378
х=7
ОК=7
R²=КД²+ОК²
R²=24²+7²
R²=625
R=25