АВ - гипотенуза, СН - высота
АН = 3 см
НВ = 9 см
Объяснение:
Дано:
тр АВС (уг С=90*)
уг В = 30*
Ас = 6 см
СН - высота
Найти:
АН и НВ - ?
1) рассм тр АВС
АВ = 2* АС по св-ву катета, лежащего против угла в 30*,
АВ = 2*6 = 12 см
уг А = 90 - 30 = 60* по св-ву углов в прямоуг тр
2) рассм тр АНС, в нём уг А = 60* (из п1), уг Н = 90* (по усл СН - высота)
уг НСА = 90-60 = 30* по св-ву углов прямоуг тр;
АН = АС : 2 ; АН = 6 : 2 = 3 см по св-ву катета, лежащего против угла в 30*
3) АВ = АН + НВ
АВ = 12 см из 1 п
АН = 3 см из 2 п
НВ = 12 - 3 = 9 см
ответ: x=9
Объяснение:
СВОЙСТВО биссектрисы внешнего угла треугольника:
Биссектриса внешнего угла треугольника (A) пересекает продолжение противоположной стороны (ВС) в точке (D), отстоящей от концов этой стороны на расстояниях, пропорциональных прилежащим сторонам треугольника. DB:DC=AB:AC.
6:(6+x) = 4:10
15=6+x
x=9
подробнее (доказательство):
если провести BN || DA, получим равнобедренный треугольник ABN:
накрест лежащие углы равны DAB=ABN и соответственные углы равны A1AD=ANB... -->
AB=4=AN; CN=6
и по теореме Фалеса: 6:х = 4:6
4х=36
х=9
1) AK=MC(по условию, т.к. треугольник равнобедренный и KM - средняя линия)
2) AD=DC (т.к. BD - медиана)
3) угол A = углу C (как углы при основании равнобедренного треугольника)
Следовательно, AKD=DMC по двум сторонам и углу между ними (1 признак), что и требовалось доказать.