1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)
а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15
б) BA · BC = |BA| · |BC| · cos ∠B = 3√2 · 5 · cos 135° = -15√2 · √2/2 = -15
в) AD · BH = 0, так как AD ⊥ BH
2. a {-4; 5}, b {-5; 4} - вектора
a · b = a₁b₁ + a₂b₂ = -4·(-5) + 5·4 = 20 + 20 = 40
3. a {-12; 5}, b {3; 4} - вектора
cos ∠(a, b) = a · b / (|a| · |b|)
a · b = -12·3 + 5·4 = -36 + 20 = -16
|a|² = (-12)² + 5² = 144 + 25 = 169 ⇒ |a| = √169 = 13
|b|² = 3² + 4² = 9 + 16 = 25 ⇒ |b| = √25 = 5
cos ∠(a, b) = -16 / (13·5) = -16/65
4. m {3; y}, n {2; -6} - ненулевые вектора
m ⊥ n ⇔ m·n = 0 (m,n ≠ 0)
Вроде так
m·n = 3·2 + y·(-6) = 6 - 6y = 0
-6y = -6
y = 1
5. Для того, чтобы "выйти" на cos ∠B нам понадобятся вектора BA и BC. Найдем их координаты:
BA {3 - 0; 9 - 6} = {3; 3}
BC {4 - 0; 2 - 6} = {4; -4}
BA · BC = 3 · 4 + 3 · (-4) = 12 - 12 = 0.
Так как BA, BC ≠ 0 ⇒ BA ⊥ BC ⇒ cos ∠B = 0
Объяснение:
Объяснение:1
1)Сколько общих точек имеют окружность и секущая?
Укажите верные утверждения:
1)3
2)нет общих точек
3)1
4)2 верно
2
Укажите верные утверждения:
1) Вписанный угол измеряется дугой, на которую он опирается верно
2) Окружность и секущая не имеют общих точек
3) Вписанные углы, опирающиеся на полуокружность - прямые верно
4) Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности верно
3
В трапецию, высота которой равна 17, вписана окружность. Найдите радиус этой окружности. R=8,5
4
Градусная мера дуги равна 40 градусов. Найдите градусную меру центрального угла, соответствующего этой дуге 80°
5
Даны окружность с центром О радиуса 5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между касательными, если ОА = 10см.
° Отв: 60°
6
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15. Отв: R=8
7
Сторона квадрата равна 13. Найдите радиус вписанной окружности. Отв: r=6,5
ответ записать без пробелов, единиц измерения, в десятичной дроби ставим ЗАПЯТУЮ!
8
Радиус окружности, проведенный к точке касания...
1)образует с касательной угол меньше 90 градусов неверно
2)образует с касательной угол больше 90 градусов неверно
3)перпендикулярен касательной верно
4)параллелен касательной неверно
9
В равностороннем треугольнике высота равна 15. Найдите радиус описанной окружности Отв: R=10
10
Сколько общих точек имеют окружность и касательная? Отв: 1 общую точку
11
В равностороннем треугольнике радиус вписанной окружности равен 2,7. Найдите радиус окружности описанной около этого треугольника. Отв: R=5,4
12
Градусная мера дуги равна 40 градусов. Найдите вписанный угол, который опирается на эту дугу. Отв: 40°
13
Вписанный угол окружности равен 40 градусов. Найдите градусную меру дуги, на которую он опирается.
Отв: 40°
14
Точки А и В разделили окружность на дуги, градусные меры которых относятся как 4:5. Найдите градусную меру большей дуги. Отв: 200°
15
В ромб вписана окружность.Её радиус равен 13. Найдите высоту ромба. Отв: 26
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.