1) Зависимость площади боковой поверхности S от образующей L;
Косинус половины угла при вершине по теореме косинусов:
cos(α/2) = (R² + L² - R²)/(2RL) = L/2R.
Отсюда синус равен: sin(α/2) = √(1 - (L²/4R²).
Радиус r основания конуса равен:
r = Lsin(α/2) = L√(1 - (L²/4R²).
Тогда S = πrL = πL√(1 - (L²/4R²)L = πL²√(1 - (L²/4R²).
2) Зависимость площади боковой поверхности S от угла α при вершине конуса в его осевом сечении.
Пусть основание конуса ниже центра шара.
Угол φ между радиусами R шара и основания r конуса равен:
φ = 90° - 2(α/2) = 90° - α.
r = Rcosφ = Rcos(90 - α) = Rsin α.
Образующая L равна:
L = r/sin (α/2) = Rsin α/sin(α/2) = R*2sin(α/2)cos(α/2)/sin(α/2) = 2Rcos(α/2).
Тогда S = πrL = πRsin α2Rcos(α/2) = 2πR²sin α*cos(α/2).
3) Зависимость площади боковой поверхности S от угла B при основании конуса.
Аналогично с пунктом 2) S = 2πR²sin 2β*sinβ.
24 \ 4 = 6 см - сторона ромба
Если сумма двух углов равна 120°, то здесь дана сумма двух острых углов ромба, иначе сумма была бы 180 °
Если мы проведем высоту , то высота образует при вершине угол равный в 30°, а катет против этого угла равен половине гипотенузы. В данном случае гипотенузой является сторона ромба.
6\2 = 3 cм катет против угла в 30°
Найдем второй катет по теореме Пифагора
b² = c² - a²
b = √36 - 9 =√27 = 3 √3 см - второй катет, он же и высота и показывает расстояние между противоположными сторонами
AB = 26 см, AD = 32 см, ∠B = 150°
Найти: S
Решение:
Проведем высоту BH
Получим прямоугольный ΔABH, ∠H = 90°, ∠B = 150-90 = 60°,
∠A = 90 - 60 = 30°
В прямоугольном треугольнике катет, лежащий напротив угла 30° равен половине гипотенузы
BH = 1/2 * AB = 1/2 * 26 = 13 см
Площадь параллелограмма равна произведению основания и высоты, проведенной к этому основанию
S = AD * BH
S = 32 * 13 = 416 см²
2) Дано: ABCD - прямоугольная трапеция, ∠A = 90°
S = 120 см², AB = 8 см - высота
BC и AD - основания
AD > BC на 6 см
Найти: AB, BC, CD, AD
Решение:
AB - высота и меньшая боковая сторона
AB = 8 см
Пусть BC = x, AD = x + 6
S = (BC + AD)/2 * AB
(x + x + 6)/2 * 8 = 120
(2x + 6)/2 = 120/8
x + 3 =15
x = 15 - 3
x = 12
BC = 12 см, AD = 12 + 6 = 18 см
Проведем высоту CH. Получим прямоугольный ΔCDH, ∠H = 90°
DH = AD - AH, AH = BC
DH = 18 - 12 = 6 см
По т.Пифагора
CD² = CH² + DH²
CD² = 8² + 6² = 64 + 36 = 100
CD=√100 = 10
ОТвет: AB = 8 см, BC = 12 см, CD = 10 см, AD = 18 см
3) Нужно поделить сторону AC на три равные части и ближе к точке A построить точку D