1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
∠M+∠N=180°⇒ ∠M+2·∠M=180° ⇒3·∠M=180°
∠M=60°
∠N=30°
∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М
∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный
NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF:
∠ M =60°
∠MNF=30°
MF=4 см ( катет против угла в 30° равен половине гипотенузы)
По теореме Пифагора
NF²=MN²-FM²=8²-4²=64-18=48
NF=4√3 см
h ( трапеции)=4√3 см
NF=EP=4 см
MP=MF+FE+EP=4+8+4=16 см
S( трапеции)=(NK+MP)·h/2=(8+16)·4√3/2=48√3 кв. см
ME=MF+FE=4+8=12
ME:EP=12:4=3:1