задача 1
1) исходя из условия, что относятся как 6/6/7 (как длина/ширина/высота), то AB=BC=CD=AD=6, ABCD - квадрат.
2) диагональ нижней и верхней грани, а миенно квадрата, равна "а" корень из 2, где "а" - сторона квадрата. Следовательно AC=6 корней из 2
3) С1С=7
BC=6
из т. Пифагора найдем C1D= корень из85
ответ: AB1=B1C=C1D=A1D=корень из 85
B1D=BD=6корней из 2
задача 2
Скрещивающиеся прямые. Если две прямые не лежат в одной плоскости не параллельны одна другой и не пересекаются, они называются скрещивающимися.
наименьшее ребро 2, а именно СС1=DD1=AA1=BB1=2
скрещивающиеся прямые тут - AD и CD , например, а расстояние и естьAD = 4
задача3
середіна AA1 - L, если не ошибаюсь сечение есть треугольник B1CD
№ 1
1) Т.к. АВ = ВС, то треугольник АВС - равнобедренный.
2) Угол АСВ (1) + угол 2= 180 градусов (смежные).
угол 1 = 180 градусов - 162 градуса = 18 градусов
3) Т.к. треугольник АВС - равнобедренный, то углы при основании равны. Т.е. угол 1 = углу В = 18 градусов.
ответ: 18 градусов.
№ 2
1-й
Пусть 1 угол будет х градусов.
Тогда 2 угол х + 84 градуса.
Их сумма равна 90 градусам (т.к. треугольник прямоугольный).
Уравнение.
х + х + 84 = 90
2х = 90 - 84
2х = 6
х = 3 градусам
х + 84 = 3 + 84 = 87 градусов.
2-й
Пусть 1 угол будет х градусов.
Тогда 2 угол х + 84 градуса.
Сумма углов треугольника равна 180 градусам.
Уравнение.
90 + х + х + 84 = 180
2х = 180 - (90 + 84)
2х = 6
х = 3
х + 84 = 3 + 84 = 87 градусов.
ответ: 87 градусов (т.к. нужно найти БОЛЬШИЙ острый угол).
Т.к. ∠DAB=∠DBA, то треугольник ADB - равнобедренный, т.е. |a|=|b|.
Кроме того, cos(ADC)=(a,c)/(|a|*|c|); cos(BDC)=(b,c)/(|b|*|c|).
Т.к. они равны и |a|=|b|, то (a,c)=(b,c), т.е. (a-b,c)=0, т.е. AB и DC перпендикулярны.