Втреугольнике одна из сторон 29 см,а другая делится точкой прикосновения вписанного в треугольник круга на отрезки 24 см и 1 см начиная от конца первой стороны .найти площадь треугольника.
Центр вписанного в треугольник круга лежит на пересечении биссектрис углов треугольника, поэтому от вершин до точек соприкосновения вписанного в треугольник круга со сторонами равные отрезки. Сторона 29 = 24 + 5 см, 25 = 24 + 1 см, третья сторона равна 5 + 1 = 6 см. Имея длины сторон по формуле Герона находим площадь: S = V(p(p-a)(p-b)(p-c)) = 60 cm^2. Примечание: р - это полупериметр, р = (29+25+6) / 2 = 30 см.
1) Угол С = 180 - А - В = 180 - 66 - 42 = 72 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = c*sin A/sin C = 20*sin 66/sin 72 b = c*sin B/sin C = 20*sin 42/sin 72 Синусы смотрим по таблице Брадиса.
2) Решается точно также Угол B = 180 - A - C = 180 - 18 - 40 = 122 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = b*sin A/sin B = 5*sin 18/sin 122 = 5*sin 18/sin 58 c = b*sin C/sin B = 5*sin 40/sin 122 = 5*sin 40/sin 58
3) Прямоугольный треугольник, теорема косинусов превращается в теорему Пифагора. c^2 = a^2 + b^2 = 16^2 + 20^2 = 256 + 400 = 656 c = √656 По теореме синусов a/sin A = b/sin B = c/sin C sin A = a/c*sin C = 16/√656*sin 90 = 16/√656 = 16√656/656 sin B = b/c*sin C = 20/√656*sin 90 = 20/√656 = 20√656/656 √656 смотрим по таблице Брадиса.
1) Угол С = 180 - А - В = 180 - 66 - 42 = 72 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = c*sin A/sin C = 20*sin 66/sin 72 b = c*sin B/sin C = 20*sin 42/sin 72 Синусы смотрим по таблице Брадиса.
2) Решается точно также Угол B = 180 - A - C = 180 - 18 - 40 = 122 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = b*sin A/sin B = 5*sin 18/sin 122 = 5*sin 18/sin 58 c = b*sin C/sin B = 5*sin 40/sin 122 = 5*sin 40/sin 58
3) Прямоугольный треугольник, теорема косинусов превращается в теорему Пифагора. c^2 = a^2 + b^2 = 16^2 + 20^2 = 256 + 400 = 656 c = √656 По теореме синусов a/sin A = b/sin B = c/sin C sin A = a/c*sin C = 16/√656*sin 90 = 16/√656 = 16√656/656 sin B = b/c*sin C = 20/√656*sin 90 = 20/√656 = 20√656/656 √656 смотрим по таблице Брадиса.
Сторона 29 = 24 + 5 см,
25 = 24 + 1 см,
третья сторона равна 5 + 1 = 6 см.
Имея длины сторон по формуле Герона находим площадь:
S = V(p(p-a)(p-b)(p-c)) = 60 cm^2.
Примечание: р - это полупериметр, р = (29+25+6) / 2 = 30 см.