Вычисления таких задач проще простого. Сумма углов треугольника равна 180 градусов, углы при основании (beta) равны. Отсюда на все случаи углов при вершине alpha следует применять формулу
beta=(180-alpha)/2.
Если угол при вершине 110 градусов, то у основания равнобедренного треугольника углы равны
beta=(180-110)/2=35 (градусов).
Пусть задан угол при основании равнобедренного треугольника и он равен 50 градусов, тогда угол при вершине равен
alpha=180-2*50=80 (градусов).
Меняете в формуле значения угла (50) на свой и находите угол в вершине треугольника для любого равнобедренного треугольника.
По мере изучения свойств треугольника, формулы для вписанных и описанных окружностей, возрастает и сложность вычислений и разнообразие задач, которые можно решить. Таким образом в 8-9 классе задачи на треугольники требуют знаний немало важных формул без которых вычисления невозможно выполнить.
Объяснение:
лАЙК
Объяснение:
а) Если периметры равносторонних треугольников равны, то равны и треугольники. Верное высказывание. Предположим,что периметры равны а сами треугольники нет. тогда периметр перовго равен 3а,а второго 3в . Поскольку периметры равны 3а=3в . Сокращаем на три и получаем,что а=в. Значит наше предположение о возможности неравенства треугольников ошибочно. Равенство периметров равносторонних треугольников доказывает равенство треугольников.
б) Если периметры равнобедренных треугольников равны, то равны и треугольники.- ОШИБОЧНО!
Достаточно простого примера. 5+7+7=19 = 3+8+8
периметры равны,а стороны треугольников не равны!
ответ:600 см площадь.