60 см^2.
Объяснение:
1) Диагональ и две смежные стороны прямоугольника образуют прямоугольный треугольник, для сторон которого верна теорема Пифагора.
2) Пусть х см - меньшая сторона прямоугольника, тогда (17-х) см - его большая сторона.
х^2 + (17-х)^2 = 13^2
х^2 + 289 - 34х + х^2 - 169 = 0
2х^2 - 34х + 120 = 0
х^2 - 17х + 60 = 0
D = 289 -240 = 49
x1 = (17-7):2 = 5
x2 = (17+7):2 = 12 - не удовлетворяет условию.
3) Меньшая сторона прямоугольника равна 5 см, тогда большая его сторона равна 17-5=12(см).
S = 5•12 = 60(см^2)
по теореме Фалеса прямые проведеные через середину третьей стороны параллельные данным сторонам(прямым содержащим стороны) пройдут через середины этих сторон, т.е. поделят стороны а и b пополам
А значит полученные отрезки будут средними линиями треугольниками. По свойству средней линии треугольника их длины будут равны половинам соотвествующих сторон, т.е. a/2 и b/2.
Две другие стороны четырехугольника равны половинам соотвествующих сторон треугольника, т.е. a/2 и b/2.
Периметр четырехугольника сумма длин всех его сторон
поэтому периметр полученного четырехугольника равен
a/2+a/2+b/2+b/2=a+b
ответ: a+b
х - ширина площадки
(х + 10) - длина площадки , по условию задачи имеем : х *(х +10) = 9000
x^2 + 10x = 9000
x^2 + 10x - 9000 =0 . Найдем дискриминант квадратного уравнения - D
D = 10^2 - 4*1*(-9000) = 100 + 36000 = 36100 . Корень квадратный из дискриминанта равен 190 . Найдем корени квадратного уравнения : 1-ый = (- 10 + 190)/2*1 =180/2 = 90 ; 2-ой = (-10 - 190)/2*1 = -200/2 = - 100 . Второй корень не подходит так как х - это ширина площадки , а она не может быть меньше 0 . Значит ширина площадки равна 90 м. Отсюда длина площадки равна : х + 10 = 90 + 10 = 100 м
Объяснение:
решение представлено на фото
,