піраміда КАВСД, К-вершина, АВСД-квадрат, О-центр основи-перетин діагоналей, КА=КВ=КС=КД=8, кут КАС=60=кут КСА, тоді кут АКС в трикутнику АКС=180-60-60=60, трикутник АКС рівносторонній, КА=КС=АС=8, АД=корінь(АС в квадраті/2)=корінь(64/2)=4*корінь2
проводимо апофему КН на АД, КН-висота=медіані, АН=НД=1/2АД=4*корінь2/2=2*корінь2, трикутник АКН прямокутний, КН=корінь(КА в квадраті-АН в квадраті)=корінь(64-8)=2*корінь14
бічна поверхня=1/2*периметрАВСД*КН=1/2*4*4*корінь2*2*корінь14=16*корінь28=32*корінь7
к- коефициент пропор., тогда АВ=3к (сторона которая ⊥АД)
СД=5к
за условием задачи АД-ВС=32 Если из вершины С опустим ⊥СК, то легко увидеть, что
КД=32см
Рассмотрим прямоугольный треугольник СКД СК=3к , СД=5к, КД=32
32²=25к²-9к²=16к²
к²=32²÷16
к=32÷4=8см
Рассмотрим треугольник АВС он прямоугольный За теоремой Пифагора
ВС²=АС²-АВ²
АВ=3·8=24см
АС=26см
ВС²=26²-24²=(26-24)(26+24)=2·50=100
ВС=10см
АД=10+32=42см
S=((ВС+АД)×АВ)÷2
S=((10+42)×24)÷2=42×12=504 см²