Окружность радиуса r касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла. найдите длину дуги, заключенной внутри треугольника, если r=8/
Треугольник -АВС Поскольку окружность КАСАЕТСЯ гипотенузы АС треугольника в вершине его острого угла С, то радиус ОС перпендикулярен АС. Это значит, что угол ОСА = 90 градусам. Поскольку сумма углов треугольника равна 180 градусам, угол АВС прямой из условий задачи, то сумма углов АСВ и ВАС равна 90 градусам. Треугольник АВС равнобедренный, т. е. углы АСВ и ВАС равны между собой, и каждый из них равен = 90 градусов / 2 = 45 градусам.
Угол ОСВ = угол ОСА - угол АСВ = 90 градусов - 45 градусов = 45 градусов. ОВ - также радиус окружности, т. к. точка В лежит на окружности. Т. о. треугольник ОСВ - равнобедренный. Из равнобедренности следует, что если угол ОСВ = 45 градусов, то и угол СВО также равен 45 градусов. Угол ВОС равен 90 градусов, т. к. сумма углов треугольника равна 180 градусов. Поскольку ВОС равен 90 градусов, то длина дуги между точками В и С равна четверти длины окружности Длина окружности lокр=2*пи*R = 2*пи*(8/пи) =16 длина дуги lдуги=lокр/4=4
Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
Поскольку окружность КАСАЕТСЯ гипотенузы АС треугольника в вершине его острого угла С, то радиус ОС перпендикулярен АС. Это значит, что угол ОСА = 90 градусам.
Поскольку сумма углов треугольника равна 180 градусам, угол АВС прямой из условий задачи,
то сумма углов АСВ и ВАС равна 90 градусам. Треугольник АВС равнобедренный, т. е. углы АСВ и ВАС равны между собой, и каждый из них равен = 90 градусов / 2 = 45 градусам.
Угол ОСВ = угол ОСА - угол АСВ = 90 градусов - 45 градусов = 45 градусов.
ОВ - также радиус окружности, т. к. точка В лежит на окружности. Т. о. треугольник ОСВ - равнобедренный. Из равнобедренности следует, что если угол ОСВ = 45 градусов, то и угол СВО также равен 45 градусов. Угол ВОС равен 90 градусов, т. к. сумма углов треугольника равна 180 градусов.
Поскольку ВОС равен 90 градусов, то длина дуги между точками В и С равна четверти длины окружности
Длина окружности lокр=2*пи*R = 2*пи*(8/пи) =16
длина дуги lдуги=lокр/4=4