Объяснение:
У ромба все стороны равны.
ΔMNP - равносторонний (все углы по 60°). Значит сторона ромба равна 30 см, а периметр Р=4*30=120 см.
***
2. Пусть меньшая сторона равна х см. Тогда большая будет х+5.
2(х+х+5)=66;
2х+5=33;
2х=28;
х=14 см - меньшая сторона.
х+5=14+5=19 см - большая сторона.
Проверим:
Р=2(14+19)=2*33=66 см. Все верно.
***
3. Диагонали прямоугольника в точке пересечения делятся пополам. АО=ОС=ОD=24/2=12 см.
РAOD=AO+OD+AD=12+12+16= 40 см.
***
4. Диагонали в ромбе являются и биссектрисами.
Если ∠ВАС=18°, то ∠А=18°*2=36°.
∠А=∠С=36°.
∠В=180°-(∠ВАС+∠ВСА)=180°-(18°+18°)=180°-36°=144°;
∠В=∠D=144°.
***
5. Пусть АК=4х. Тогда KD=2х.
4х+2х=12;
6х=12;
х=2;
АК=4*2=8 см;
KD=2*2=4 см.
∠ABK=∠KBC=180°/3=60° - ( равны смежному углу с углом В.)
Значит ΔАВК - равносторонний: АВ=ВК=AK=СD=4 см.
Р=2(АВ+ВС)=2(4+12) =2*16=32 см.
6) Дано:
KMLF-параллелограмм
KM=2KF
Р=36
KM=FL(т.к KMFL-параллелограмм)
FK=ML(т.к KMFL-параллелограмм)
P=KM+ML+LF+FK=KM+KM/2+KM+KM/2=3KM
3KM=36
KM=12
FL=KM=12
FK=ML=KM/2=6
ответ: FL=12, KM=12, FK=6, ML=6.
7) Дано:
PRNM-параллелограмм
уголМ+уголR=140°
уголМ=уголR=70°(т.к у параллелограмма противоположные углы равны)
уголМ+уголP=180°(по свойству параллелограмма)
уголP=180°-70°=110°
уголP=уголN=110°(как противоположные углы параллелограмма)
ответ: уголМ=70°, уголR=70°, уголP=110°, уголN=110°.
8) Дано:
KRNM-прямоугольник
уголМ=90°
Т.к противоположные стороны попарно параллельны, и соседние стороны, пересекающиеся в одной вершине перпендикулярны, следовательно все углы=90°
ответ: уголМ=90°, уголK=90°, уголR=90°, уголN=90°.
Найти площадь прямоугольного треугольника с катетом 6 м и противолежащим углом 30 градусов.