Даны точки А(-2;0), B(6;6), C(1;-4).
Находим длины сторон.
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √100 = 10.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √125 = 5√5 ≈ 11,18034.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √25 = 5.
Теперь определяем длину биссектрисы АЕ:
АЕ = √(АВ*АС*((АВ+АС)²-ВС²))
=
АВ+АС
= √(10*5*((10 + 5)² - 125)) √(50*100) 5*10√2 10√2
= = = ≈
10 + 5 15 15 3
≈ 4,714045.
Площадь полной поверхности конуса = сумма площади боковой поверхности и площади основания конуса.
Примем радиус основания равным r.
Тогда площадь основания πr²
Формула площади боковой поверхности конуса πrL. ⇒
Sбок=20πr
По условию πr²+πrL=400⇒⇒
3,14r²+60,28r-400=0
Решив квадратное уравнение, получим r1=5,16, r2 - отрицательный и не подходит.
r=5,16 см
Площадь боковой поверхности πrL=S=π•5,16•20=103,2π - площадь меньшего сектора круга радиусом 20 см
Площадь сектора АОВ=πR²α :360° , где R=L=20 см, α- угол развертки конуса.
π•400•α :360°=103,2π, откуда α=92,88°° = или ≈ 92°53'.