Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. ⇒
ВС - перпендикуляр, и треугольник АВС - прямоугольный. Так как все точки одной из параллельных плоскостей находятся на одинаковом расстоянии от другой плоскости, то АА₁=ВС, и прямоугольные треугольники АВА₁ и АВС равны, т.к. у них общая гипотенуза и по равному катету. ⇒ АС=А₁В.
Определение: Проекция точки на плоскость -- это основание перпендикуляра, опущенного из этой точки на плоскость. Множество проекций точек прямой на плоскость образуют проекцию этой прямой.⇒ А₁В и АС- проекции отрезка АВ на каждую из плоскостей.
Стороны треугольника АВС составляют одну из Пифагоровых троек, где стороны прямоугольного треугольника - целые числа. В этой тройке больший катет равен 12 ( можно проверить по т. Пифагора).
Проекции отрезка АВ на параллельные плоскости равны. АС=А₁В=12
-----
2.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. Следовательно, углы ВВ₁А=СС₁А=90°
острый угол = 60 => это по сути два равносторонних треугольника с высотой равной половине большей диагонали = 2sqrt(3)
сторона равна
a^2=1/4a^2+d^2/4
3/4a^2=1/4d^2
a^2=1/3d^2=4
a=2
площадь треуг sqrt(3)/4a^2=sqrt(3)
площадь ромба в 2 раза больше = 2*sqrt(3)