М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Tadashimi2016
Tadashimi2016
19.06.2021 18:51 •  Геометрия

Гипотенуза равнобедренного прямоугольного треугольника равна 7√2. найдите катет.

👇
Ответ:
skuzembaeva
skuzembaeva
19.06.2021
Раз треугольник равнобедренный и прямоугольный, значит катеты равны. пусть они будут х. Теперь по т. Пифагора:
7\sqrt{2}=\sqrt{ x^{2} + x^{2} }
4,6(56 оценок)
Открыть все ответы
Ответ:
kanat9809
kanat9809
19.06.2021

1)

полная окружность 360 град ;  9/11 - всего 20 частей

дуга (9) = 9/20*360=162 град

дуга (11) =11/20*360=198 град

вершина N- лежит на окружности

сторона MP-  совпадает с диагональю

свойство  прямоугольного треугольника , вписанного в окружность

треугольник  МNP - прямоугольный

<MNP=90 град

<MPN (вписанный)-опирается на дугу  MN=162 град

свойство вписанного угла (он равен половине  дуги, на которую опирается)

<MPN=1/2*162=81 град

<NMP=90- <NPM=90-81=9 град

ответ  углы  90 ;81;9 град


1)точки m и n делят окружность на дуги,градусные меры которых пропорциональны числам 11 и 9. через т
4,8(74 оценок)
Ответ:
bosiy01
bosiy01
19.06.2021

1) S = 1/6

2) S = 1/2

3) S = 5/9

Объяснение:

Площадь треугольника можно вычислить по следующей формуле:

S = \frac{1}{2}a\cdot{b}\cdot\sin\gamma

1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)

Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол \gamma у единичного и у малого треугольника общий, то

a_1 = \frac{a}{2};\: b_1=\frac{b}{3};\: \angle\gamma - \small{общий}

и площадь S1 равна

S_1 = \frac{1}{2}a_1\cdot{b_1}\cdot\sin\gamma \\ S_1 = \frac{1}{2}\cdot \frac{ a}{2}\cdot \frac {b}{3}\cdot\sin\gamma = \frac{1}{12}a\cdot{b}\cdot\sin\gamma = \\ = \frac{1}{6} \cdot \bigg(\frac{1}{2}a\cdot{b}\cdot\sin\gamma \bigg) = \frac{1}{6} S

А т.к. S = 1 = \: S1 = \frac{1}{6}

2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = S_4 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 + S_4 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}

Соответственно, искомая площадь составляет

S_1= 1- ( S_2+S_3+S_4) = 1 - \frac{1}{2} = \frac{1}{2} \\

3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}

Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:

S_4= \frac{1}{3} \cdot \frac{1}{3} \cdot S = \frac{1}{9} S = \frac{1}{9}\cdot1= \frac{1}{9} \\

Следовательно, общая площадь незакрашенных частей равна:

\\ S_2 + S_3+ S_4 = \frac{1}{6} +\frac{1}{6} + \frac{1}{9}= \\= \frac{1}{3}+ \frac{1}{9}\ = \frac{3 + 1}{9} = \frac{4}{9}

А искомая площадь закрашенной фигуры S1 составляет

S_1=S - ( S_2 + S_3 + S_4 ) = 1 - ( S_2 + S_3 + S_4 ) = \\ = 1 - \bigg( \frac{1}{3} + \frac{1}{9} \bigg) = 1 - \frac{4}{9} = \frac{5}{9}


Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
4,5(19 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ