М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sogoyan2016
sogoyan2016
06.05.2021 18:57 •  Геометрия

Прямоугольная трапеция abcd описана около окружности.вычислите длину доковой стороны, если радиус окружности равен 4 см , а острый угол трапеции 60 градусов. решение

👇
Ответ:
Anjelika222
Anjelika222
06.05.2021

1) Одна боковая сторона равна диаметру окружности, т.е. 8 см (это сторона, перпендикулярная основаниям).

2) Из вершины тупого угла трапеции опустим высоту и рассмотрим образовавшийся прямоугольный тр-к. В нем один из острых углов равен 60 градусов. Второй острый угол его равен 90-60=30 градусов, а катет, лежащий напротив угла 30 гр., равен половине гипотенузы. Прмем длину этого катета за х, тогда длина гипотенузы равна 2х. Второй катет равен найденной в 1-м пункте стороне, т.е. 8 см. По теореме Пифагора: (2х)^2=x^2+8^2; => 4x^2=x^2+64; => x^2=64/3; => x=8/(sqrt(3)).

3) Длина боковой стороны равна 2х=16/(sqrt(3))

4,5(88 оценок)
Открыть все ответы
Ответ:
ssmir7381
ssmir7381
06.05.2021
Описана окружность - окружность, в которую можно вписать многоугольник так, чтобы все его вершины лежали на окружности. Центром описанной окружности является точка пересечения серединных перпендикуляров. Для доказательства нужно провести окружность, построить внутри треугольник так, чтобы все его вершины лежали на этой окружности, затем построить серединные перпендикуляры к сторонам, отметить точку их пересечения. А затем нужно провести из вершин все трёх углов отрезки к точке пересечения этих серединных перпендикуляров. Они будут равны, так как каждый из треугольников, боковыми сторонами которого являются эти отрезки, будут равнобедренными, т.к. любая точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от сторон данного отрезка.
4,8(90 оценок)
Ответ:
global34523
global34523
06.05.2021
Пусть это будут касательные АВ и АС, а центр окружности - О. Соответственно точки В и С - точки касания, а поэтому [ОС] перпендикулярен [АС], [ОВ] перпендикулярен [АВ]. Тогда рассмотрим ∆и АОС и АОВ. Они прямоугольные и у них равны катеты ОС и ОВ как радиусы одной и той же окружности. К тому же, у них общая гипотенуза. Получаем, что ∆ АОС = ∆ АОВ по катету и гипотенуза, а значит, остальные элементы этих ∆ов тоже равны, то есть |АВ| = |АС|, а это отрезки касательных, проведенных к данной окружности, ч.т.д.
4,4(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ