Прямоугольная трапеция abcd описана около окружности.вычислите длину доковой стороны, если радиус окружности равен 4 см , а острый угол трапеции 60 градусов. решение
1) Одна боковая сторона равна диаметру окружности, т.е. 8 см (это сторона, перпендикулярная основаниям).
2) Из вершины тупого угла трапеции опустим высоту и рассмотрим образовавшийся прямоугольный тр-к. В нем один из острых углов равен 60 градусов. Второй острый угол его равен 90-60=30 градусов, а катет, лежащий напротив угла 30 гр., равен половине гипотенузы. Прмем длину этого катета за х, тогда длина гипотенузы равна 2х. Второй катет равен найденной в 1-м пункте стороне, т.е. 8 см. По теореме Пифагора: (2х)^2=x^2+8^2; => 4x^2=x^2+64; => x^2=64/3; => x=8/(sqrt(3)).
Описана окружность - окружность, в которую можно вписать многоугольник так, чтобы все его вершины лежали на окружности. Центром описанной окружности является точка пересечения серединных перпендикуляров. Для доказательства нужно провести окружность, построить внутри треугольник так, чтобы все его вершины лежали на этой окружности, затем построить серединные перпендикуляры к сторонам, отметить точку их пересечения. А затем нужно провести из вершин все трёх углов отрезки к точке пересечения этих серединных перпендикуляров. Они будут равны, так как каждый из треугольников, боковыми сторонами которого являются эти отрезки, будут равнобедренными, т.к. любая точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от сторон данного отрезка.
Пусть это будут касательные АВ и АС, а центр окружности - О. Соответственно точки В и С - точки касания, а поэтому [ОС] перпендикулярен [АС], [ОВ] перпендикулярен [АВ]. Тогда рассмотрим ∆и АОС и АОВ. Они прямоугольные и у них равны катеты ОС и ОВ как радиусы одной и той же окружности. К тому же, у них общая гипотенуза. Получаем, что ∆ АОС = ∆ АОВ по катету и гипотенуза, а значит, остальные элементы этих ∆ов тоже равны, то есть |АВ| = |АС|, а это отрезки касательных, проведенных к данной окружности, ч.т.д.
1) Одна боковая сторона равна диаметру окружности, т.е. 8 см (это сторона, перпендикулярная основаниям).
2) Из вершины тупого угла трапеции опустим высоту и рассмотрим образовавшийся прямоугольный тр-к. В нем один из острых углов равен 60 градусов. Второй острый угол его равен 90-60=30 градусов, а катет, лежащий напротив угла 30 гр., равен половине гипотенузы. Прмем длину этого катета за х, тогда длина гипотенузы равна 2х. Второй катет равен найденной в 1-м пункте стороне, т.е. 8 см. По теореме Пифагора: (2х)^2=x^2+8^2; => 4x^2=x^2+64; => x^2=64/3; => x=8/(sqrt(3)).
3) Длина боковой стороны равна 2х=16/(sqrt(3))