Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
1) Октаэдр можно представить как 2 соединённые основаниями правильные четырёхугольные пирамиды. Объем Vo вписанного в шар радиусом R октаэдра равен 2*((1/3)SoH). Сторона квадрата (это основание двух пирамид) равна R√2. So = (R√2)² = 2R². Высота Н = R. Тогда объём вписанного в шар октаэдра равен V = (2/3)*(2R²)*R = 4R³/3. Отношение Vш/Vo = ( (4πR³)/3) / ( (4R³)/3) = π.
2) Сторона квадрата, описанного около окружности радиуса R равна 2R. Тогда So = (2R)² = 4R². Высота пирамиды (половины октаэдра) Н = R√2. Тогда объём описанного около шара октаэдра равен: V = (2/3)*(4R²)*(R√2) = 8√2R³/3. Отношение Vш/Vo = ( (4πR³)/3) / ( (8√2R³)/3) = π/(2√2).
Площадью осевого сечения конуса является равнобедренный треугольник с основанием, равным диаметру основания конуса, и боковыми сторонами, равными образующей конуса. Проще всего сначала вычислить из имеющихся данных о половине осевого сечения - прямоугольного треугольника с вершинами в центре основания, центре вершины конуса и на окружности основания - высоту сечения (она же высота конуса).Гипотенуза Δ-ка (половины сечения) =10 см., а один из катетов равен 12/2=6 см. Второй катет - высота осевого сечения и конуса - равен: √(10²-6²) = 8 см. S ос.сеч.= 12×8 / 2 = 48 см²