М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
supermen2018
supermen2018
06.12.2021 14:27 •  Геометрия

Стороны одного треугольника равны 15 м, 35 м и 30м, а две стороны подобного ему треугольника равны 7 м и 6м. вычислите длину 3 стороны.

👇
Ответ:
Vikusya18101
Vikusya18101
06.12.2021
У подобных треугольников соответствующие стороны пропорциональны. Чтобы решить задачу нужно составить правильно пропорцию
35/7=30/6=15/x
35÷7=5
30÷6=5
15÷х=5
х=3
Третья сторона 3м
4,7(92 оценок)
Открыть все ответы
Ответ:
RiilSlooozhnaa
RiilSlooozhnaa
06.12.2021

Основанием пирамиды является квадрат со стороной 10 см. Одно боковое ребро перпендикулярно плоскости основания и равно 24 см.

Вычисли площадь боковой поверхности.

Объяснение:

1)S(бок)=S(МВА)+S(МВС)+S(МАD)+S(МСD).

2)ΔМВА=ΔSМВС как прямоугольные по двум катетам⇒S(МВА)=S(МВС)=1/2*24*10=120 (см²).

Найдем МС= МА=√(24²+10²)=√676=26(см)

3)Т.к. прекция ВА⊥AD, то и наклонная МА⊥AD⇒ΔМAD-прямоугольный.

Т.к. прекция ВС⊥СD, то и наклонная МС⊥СD⇒ΔМСD-прямоугольный.

S(МАD)=S(МСD) как площади равных прямоугольных треугольников по катету и гипотенузе .

S(МАD)=S(МСD)=1/2*10*26=130 (см²)

4)S(бок)=2*120+2*130=500 (см²)


Основанием пирамиды является квадрат со стороной 10 см. Одно боковое ребро перпендикулярно плоскости
4,5(84 оценок)
Ответ:
VaBaGaBa
VaBaGaBa
06.12.2021

Объяснение:

Задача № 1.

Дано: BC = 3, AC = 4, AB - ?

Решение: Так как ABC - прямоугольный треугольник, то AB можно найти по теореме Пифагора:

AB = \sqrt{BC^{2} +AC^{2} } =\sqrt{9+16} =\sqrt{25} =5

ответ: 5.

Задача № 2.

Дано: KN = 4, MK = 13, NM - ?

Решение: Так как NMK - прямоугольный треугольник, то NK можно найти по теореме Пифагора:

NM = \sqrt{MK^{2} -NK^{2} } =\sqrt{169-16} =\sqrt{153} =3\sqrt{17}

ответ: 3\sqrt{17}

Задача № 3.

Дано: RK=KL=\sqrt{5}, RL - ?

Решение: так как RKL - прямоугольный треугольник, то RL найдем через теорему Пифагора:

RL = \sqrt{RK^{2} +KL^{2} } =\sqrt{5+5} =\sqrt{10}

ответ: \sqrt{10}

Задача № 4.

Дано: ∠M = 30°, MN=2\sqrt{3} ,MS-?

Решение: MNS - прямоугольный треугольник:

1. Так как катет NS лежит напротив 30 градусов, то он равен половине гипотенузы:

NS = \frac{NM}{2} =\sqrt{3}

2. Найдем катет MS через теорему Пифагора:

MS = \sqrt{MN^{2} -NS^{2} } =\sqrt{12-3} =\sqrt{9} =3

ответ: 3

Задача № 5.

Дано: AC=16, BC=17, BD - ?

Решение: Рассмотрим треугольник BDC - прямоугольный:

DC=\frac{AC}{2} =8 - так как высота делит основание пополам в равнобедренном треугольнике

BD найдем по теореме Пифагора:

BD=\sqrt{BC^{2} -DC^{2} } =\sqrt{289-64} =\sqrt{225} =15

ответ: 15

Задача № 6.

Дано: ΔRMN - правильный, RN=6,RK-?

Решение: Рассмотрим ΔRKN - прямоугольный:

1. Высота делит основание пополам в правильном треугольнике:

NK=KM=3

2. Найдем высоту по теореме Пифагора:

RK=\sqrt{RN^{2} -NK^{2} } =\sqrt{36-9} =\sqrt{27} =3\sqrt{3}

ответ: 3\sqrt{3}

Задача № 7.

Дано: ΔMPR - правильный, RT=8, PR -?

Решение: Рассмотрим ΔPTR - прямоугольный:

1. Высота делит основание пополам, тогда:

PT=\frac{x}{2}

2. Найдем PR через теорему Пифагора:

PR^{2} =TR^{2} +PT^{2} \\x^{2} =64+\frac{x^{2} }{4} \\4x^{2} =256+x^{2} \\3x^{2} =256\\x=\sqrt{\frac{256}{3}}

Отрицательный корень нам не подходит, так как длина отрезка не может быть отрицательной.

ответ: \sqrt{\frac{256}{3}}

Задание № 8.

Дано: AC=25, AD=10, CD-?

Решение: Рассмотрим ΔACD - прямоугольный:

Найдем CD по теореме Пифагора:

CD=\sqrt{AC^{2} -AD^{2} } =\sqrt{625-100} =\sqrt{525} =5\sqrt{21}

ответ: 5\sqrt{21}

4,5(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ