Радиус шара равен 8 см. через конец радиуса, лежащего на сфере, проведена плоскость под углом 45о к радиусу. найдите площадь сечения шара этой плоскостью.
Изобразим схематически шар и диаметр АВ сечения, проведенного под углом 45° к его радиусу. Треугольник АОВ - равнобедренный прямоугольный, и его гипотенуза ( диаметр сечения) равна 8√2 Радиус сечения вдвое меньше =4√2 Сечение шара плоскостью - круг. Площадь круга S=πr² Площадь сечения = π (4√2)² =32 см²
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Тетраэдр - это ОН...))) Поэтому суммарная длина ЕГО ребер..))) Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)
Треугольник АОВ - равнобедренный прямоугольный, и его гипотенуза ( диаметр сечения) равна 8√2
Радиус сечения вдвое меньше =4√2
Сечение шара плоскостью - круг.
Площадь круга
S=πr²
Площадь сечения = π (4√2)² =32 см²