Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. Найти сторону треугольника.
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
радиус ОН=а√2):2=a/√2
Стороны описанного треугольника АВС=а+√6
Радиус ОН вписанной в него окружности =ВН/3
ВН=АВ*sin 60º=√3*(а+√6):2
OH=√3*(а+√6):6
Приравняем оба значения ОН:
a/√2=√3*(а+√6):6 из чего следует
а=(а+√6):√6⇒
a=√6:(√6-1)
АВ=[√6:(√6-1)]+√6
АВ=(√6+6-√6):(√6-1)=6:(√6-1)
В9) Т.к. тр-к АВС - правильный, то основание высоты SO пирамиды проецируется в точку пересечения медиан. V=1/3*S*h, где S - площадь основания пирамиды (S=7 по усл.), h=SO, V=21. SO=21/((1/3)*S)=(21*3)/7=9.
В6) cosB=sqrt(1-(sinB)^2)=sqrt(1-15/16)=sqrt(1/16)=1/4; => BD/BC=1/4; =>
=> BD=BC/4=12/4=3; => BA=2BD=2*3=6.