Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
1. Решение: Рассмотрим треугольник АВE: В этом трeугольнике угол EАК равен углу EАD, т.к. АE-биссектриса. Но угол EАD равен также углу ВEА - как накрест лежащие углы при пересечении 2-ух параллельных прямых ВС и АD секущей АE. Следовательно угол ВАE равен углу ВEА, а значит треугольник ВАEравнобедренный отсюда следует, что АВ=ВE=7. Т.к. АВСD-параллелограмм, то АВ=СD=7, ВС=АD=21.Найдем периметр параллелограмма: АВ+ВС+СD+АD=7+21+7+21= 56 см. 2. Решение: Дано: ABCD - ромб Доказать: ABCD - параллелограмм Доказательство: ABCD - ромб , следовательно AB=BC=CD=AD угол А = угол С = 90 градусов угол А + угол В = 180 градусов , т.е. угол B =180 градусов - угол A = 90 градусов Что и требовалось доказать.
1. Центральные углы АОЕ и ВОЕ, опирающиеся на дуги АЕ и ВЕ, соответственно, равны их градусным мерам. Рассмотрим треуг-ик АОВ. Он равнобедренный, т.к. АО и ВО - радиусы окружности. Отрезок ОЕ перпендикулярен КМ, т.к. КМ - касательная (касательная к окружности перпендикулярна к радиусу, проведенному в точке касания Е). Значит, ОЕ перпендикулярен и хорде АВ (если прямая перпендикулярна к одной из двух параллельных прямых КМ, то она перпендикулярна и к другой АВ. Прямые АВ и КМ параллельны по условию). Тогда ОЕ - высота равнобедренного треуг-ка АОВ. Пользуемся свойством равнобедренного треуг-ка о том, что высота его, проведенная к основанию, является медианой и биссектрисой. Значит <AOE=<BOE Следовательно, дуги АЕ и ВЕ, на которые опираются эти углы, также равны между собой: АЕ=ВЕ
2. Пользуемся свойством биссектрисы угла: каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Строим биссектрису угла ВАС, на ее пересечении с катетом ВС ставим точку Е. Помним о том, что расстояние от точки Е до прямой - длина перпендикуляра от этой точки до прямой. Перпендикуляр СЕ уже есть (угол С прямой по условию), строим перпендикуляр ЕС1. ЕС=ЕС1
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.