Точки а(2; 0) и в(0; 2) являются вершинами квадрата abcd. 1) найти координаты остальных вершин квадрата; 2) вычислить длину стороны квадрата ; 3) найти площадь квадрата.
1) В этой задаче 2 варианта ответа, так как не сказано, в какую сторону от стороны АВ расположен квадрат. а) Так как разность координат по Х и по У для точек А и В одинакова, то и для других точек будет такой же. С(2; 4), Д(4; 2).
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Параллелограмм АВСД: АВ=СД, ВС=АД=2 АР - биссектриса угла А (<ВАР=<ДАР) ВМ- биссектриса угла В (<АВМ=<СВМ) ΔВАР - равнобедренный АВ=ВР, т.к. углы при основании <ВАР=<ВРА (<ВРА=<ДАР как накрест лежащие углы) ΔАВК=ΔРВК по двум сторонам (ВК-общая, АВ=ВР) и углу между ними (<АВК=<РВК по условию) .Аналогично ΔАВК=ΔАМК по двум сторонам (АК-общая, АВ=АМ) и углу между ними (<ВАК=<МАК по условию) Следовательно, в этих 3 равных треугольниках равны и высоты h=1 (расстояние от точки К до стороны АВ, или ВР, или АМ). Значит высота параллелограмма равна Н=2h=2*1=2 Площадь Sавсд=Н*АД=2*2=4
а) Так как разность координат по Х и по У для точек А и В одинакова, то и для других точек будет такой же.
С(2; 4),
Д(4; 2).
б) С(-2; 0),
Д(0; -2)
2) a = √(0-2)² + (2-0)²) = √(4 + 4) = √8 = 2√2 = 2.828427
3) S = a² = 8.