исходя из этих данных можно решить только в случае, если исходный треугольник мре - равнобедренный, с равными сторонами мр и ре.тогда все легко.ра - является в данном случае и биссекриссой и высотой.и у нас 2 прямоугольных треугольника мра и аре, в которых ма=ае=в/2 (т.к. высота в равнобедренном треугольнике делит основание пополам).собствено дальше все решение основано на свойствах прямог. треугольника, а именно.мр - это гипотенуза мра, и равнамр = ма * синус (бетта/2)=в/2 *синус (бетта/2)а ра - это катет того же прямоуг треугольника, и он равен ра=ма/тангенс (бетта/2)=в/2 / тангенс (бетта/2)
но если треугольник мре - произвольный, то боюсь решить не получится, хотя мне кажется он все-таки равнобедренный.удачи
в
а д е с
если вд=ве, то треугольник две равнобедренный. его углы при основании равны. (уголвде=углувед)
уголадв=углусев т.к. являются смежными с равными углами угвде=угвед
значит, треугольник адв=треугольнику вес по i признаку (ад=ес по условию, дв=ев по условию, уголадв=углусев)
из равенства треугольникос вледует, что ав=вс.
Шар может быть вписан в цилиндр только тогда, когда этот цилиндр правильный, т.е. когда его осевое сечение является квадратом.
Радиус основания цилиндра равен радиусу шара и равен r.
Высота цилиндра равна диаметру основания и равна 2 r.
Полная площадь поверхности складывается из площади двух оснований и площади боковой поверхности:
2*πr²+2πr*2r=6πr²
Площадь шара = 4πr²
Площадь цилиндра больше площади шара в 6πr²:4πr²=1,5(раза)
Площадь полной поверхности шара
111*1,5=166,5 ( единиц площади)