MN II AB как средняя линия в треугольнике ABC; ML II CD как средняя линия BCD; KL II AB как средняя линия ABD; KN II CD как средняя линия ACD; Поэтому противоположные стороны четырехугольника KLMN параллельны, то есть это параллелограмм. По условию его диагонали KM и LN перпендикулярны, то есть это - ромб, все его стороны равны. Так же по условию KN = LN, то есть треугольник KNL равносторонний. Следовательно ∠NKL = 60°; Так как стороны этого угла параллельны сторонам искомого угла (то есть KL II AB; KN II CD), то прямые AB и CD тоже образуют угол 60°.
АВСД - рівнобічна трапеція, де АВ=СД=10см (бо бічні сторони у рівнобічної трапеції рівні), а ВС та АД - це основи трапеції. В трапецію можна вписати коло, якщо сума довжин основ рівна сумі довжин бокових сторін, тобто
АВ+СД= ВС +АД
10+10=ВС+АД
ВС+АД=20
Формула визначення радіуса вписаного в трапецію кола: r = h/2, де r - це радіус кола, а h - це висота трапеції h=2* r=2*4=8см Формула площі через основи та висоту: S = (ВС + АД)· h/2 Раніше ми знайшли, що ВС+АД=20см, що і підставимо у формулу: S = 20· 8/2 S =80 см²
Відповідь: площа трапеції, яка описана навколо кола = 80 см²
∠F - общий
∠DAF=∠CBF и ∠FCB=∠FDA (при BC||AD и секущих AF и DF соотв)
⇒ ΔAFD и ΔBFC - подобные ⇒
BC:AD=BF:AF=2:5
BF:10=2:5 ⇒ BF=4 ⇒ AB=AF-BF=10-6=6 СМ