Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Пусть одна часть - х, 4 части - 4х, , 3 части - 3х. Сумма углов треугольника180 градусов. Сложим все части, то есть углы.4х+2х+3х=180
9х=180
х=180:9
х=20 градусов - это приходится на одну часть. 4 части - 4х=20*4=80 градусов,
2 части - 2х=20*2=40 градусов,
3 части - 3х=20*3=60градусов,
ответ: 80 градусов,40 градусов,60градусов это его углы