Отрезки, для длин которых выполняется пропорция
Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов
Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.
треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами. В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.
MicroExcel.ru
MicroExcel.ru Математика Геометрия
МатематикаГеометрия
Свойства высоты прямоугольного треугольника
11.07.202052995
В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.
Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые (<90°).
Содержание скрыть
Свойства высоты в прямоугольном треугольнике
Свойство 1
Свойство 2
Свойство 3
Свойство 4
Пример задачи
Свойства высоты в прямоугольном треугольнике
Свойство 1
В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.
Три высоты в прямоугольном треугольнике
Третья высота (h3) опускается на гипотенузу из прямого угла.
Свойство 2
Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.
Свойство 3
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.
Деление прямоугольного треугольника высотой из вершины прямого угла на подобные треугольники
1. △ABD ∼ △ABC по двум равным углам: ∠ADB = ∠BAC (прямые), ∠ABD = ∠ABC.
2. △ADC ∼ △ABC по двум равным углам: ∠ADC = ∠BAC (прямые), ∠ACD = ∠ACB.
3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.
Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.
Аналогичным образом доказывается, что ∠ABD = ∠DAC.
Свойство 4
В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:
1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:
Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике
Высота к гипотенузе в прямоугольном треугольнике
2. Через длины сторон треугольника:
Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны
Высота к гипотенузе в прямоугольном треугольнике
Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :
Синус острого угла в прямоугольном треугольнике (формула)
Синус острого угла в прямоугольном треугольнике (формула)
Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны
Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой, находящейся на противолежащей стороне
Пусть ∠BAC = α (∠BAD = 2α). Проведём через С прямую, параллельную АВ. Пусть она пересекает AD в точке Х. Тогда ABCX - параллелограмм. Значит противоположные стороны равны: BC = AX. AD в 2 раза больше BC, которое равно AX, значит X - середина AD. ∠ACX = ∠CAB = α = ∠CAX, значит AX = CX = AB. При этом AB = CD, т. к. трапеция равнобокая, значит XD=DC=CX, т. е. ΔXDC - равносторонний. Значит ∠ADC = 60°, ∠DAB = ∠ADC, т. к. трапеция равнобокая, т. е. ∠DAB = 60°, ∠ABC = ∠BCD = 180°-60° = 120° по свойству трапеции
ответ: ∠ABC=∠BCD=120°, ∠CDA=∠DAB=60°
треугольник АВС равнобедренный, АВ=ВС=25, АС=14, проводим высоту ВН=медиане, АН=СН=1/2АС=14/2=7, треугольник АВН прямоугольный, ВН²=АВ²-АН²=625-49=576, ВН=24, проводим медианы АК и СМ все медианы пересекаются в точке О и в точке О делятся в отношении 2/1 начиная от вершины, ВО=2/3*ВН=24*2/3=16, ОН=1/3ВН=24*1/3=8, АК=СМ (медианы в равнобедренных треугольниках, проведенные к боковым сторонам равны), АО=СО,
треугольник АОН прямоугольный, АО²=ОН²+АН²=64+49=113, АО=СО=√113