М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ukraina3
ukraina3
11.02.2022 02:34 •  Геометрия

Втреугольнике со сторонами 25 см, 25 см, 14 см найдите расстояние от точки пересечения медиан до вершин треугольника.

👇
Ответ:
alinaaubakirova1
alinaaubakirova1
11.02.2022


треугольник АВС равнобедренный, АВ=ВС=25, АС=14, проводим высоту ВН=медиане, АН=СН=1/2АС=14/2=7, треугольник АВН прямоугольный, ВН²=АВ²-АН²=625-49=576, ВН=24, проводим медианы АК и СМ все медианы пересекаются в точке О и в точке О делятся в отношении 2/1 начиная от вершины, ВО=2/3*ВН=24*2/3=16, ОН=1/3ВН=24*1/3=8, АК=СМ (медианы в равнобедренных треугольниках, проведенные к боковым сторонам равны), АО=СО,

треугольник АОН прямоугольный, АО²=ОН²+АН²=64+49=113, АО=СО=√113

4,5(23 оценок)
Открыть все ответы
Ответ:
Ухв
Ухв
11.02.2022

Отрезки, для длин которых выполняется пропорция

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами. В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

MicroExcel.ru

MicroExcel.ru Математика Геометрия

МатематикаГеометрия

Свойства высоты прямоугольного треугольника

11.07.202052995

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые (<90°).

Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

Свойство 2

Свойство 3

Свойство 4

Пример задачи

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Три высоты в прямоугольном треугольнике

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Деление прямоугольного треугольника высотой из вершины прямого угла на подобные треугольники

1. △ABD ∼ △ABC по двум равным углам: ∠ADB = ∠BAC (прямые), ∠ABD = ∠ABC.

2. △ADC ∼ △ABC по двум равным углам: ∠ADC = ∠BAC (прямые), ∠ACD = ∠ACB.

3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.

Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

Высота к гипотенузе в прямоугольном треугольнике

2. Через длины сторон треугольника:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Высота к гипотенузе в прямоугольном треугольнике

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Синус острого угла в прямоугольном треугольнике (формула)

Синус острого угла в прямоугольном треугольнике (формула)

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой, находящейся на противолежащей стороне

4,5(98 оценок)
Ответ:
Anchoys777
Anchoys777
11.02.2022

Пусть ∠BAC = α (∠BAD = 2α). Проведём через С прямую, параллельную АВ. Пусть она пересекает AD в точке Х. Тогда ABCX - параллелограмм. Значит противоположные стороны равны: BC = AX. AD в 2 раза больше BC, которое равно AX, значит X - середина AD. ∠ACX = ∠CAB = α = ∠CAX, значит AX = CX = AB. При этом AB = CD, т. к. трапеция равнобокая, значит XD=DC=CX, т. е. ΔXDC - равносторонний. Значит ∠ADC = 60°, ∠DAB = ∠ADC, т. к. трапеция равнобокая, т. е. ∠DAB = 60°, ∠ABC = ∠BCD = 180°-60° = 120° по свойству трапеции

ответ: ∠ABC=∠BCD=120°, ∠CDA=∠DAB=60°

4,7(52 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ