Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{-1;-1;2}, |AB|=√(1+1+4)=√6. BC{1;-1;0}, |BC|=√(1+1+0)=√2. CD{1;1;-2},|CD|=√(1+1+2)=√6. AD{1;-1;0}, |AD|=√(1+1+0)=√2. Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA. Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство). Что и требовалось доказать. Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}. Угол α между вектором a и b: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)]. В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или CosA=√3/3.
Треугольник прямоугольный, А - вершина, СВ - основание (ну, чтоб понятно было. С справа).
АВ = 15 sinA = cosB = 0.6 АС, ВС = ? ____________________ sin²A + cos²A = 1 , ⇒ (следовательно) cos²A = 1² - 0.6² или cosA = = = 2, cosA = 2 ____________________ Теорема синусов: (в нашем случае а = СВ, b = АС, с = АВ). Нужно взять только два, следовательно, берем первую дробь (потому что есть синус А) и последнюю, потому что есть сторона С. ____________________ (произведение крайних равно произведению средних), ⇒ СВ = 15*0,6 = 9 ____________________ Дальше по теореме Пифагора: Квадрат гипотенузы равен сумме квадратов катетов, с² = а² + b² ____________________ В нашем случае 15² = 9² + АС² , ⇒ АС² = 225 - 81 АС = АС = 12 ____________________ ответ: СВ = 9; АС = 12.
В ΔDSH:Sin(α/2)=DH/SD => SD=DH/Sin(α/2). б) SD=SA=SB=SC=m/(2Sin(α/2)). а) DO - половина диагонали квадрата. DO=m√2/2. SO=√(SD²-DO²)=√(m²/4Sin²(α/2)-2m²/4)=√((m²(1-2Sin²(α/2))/2Sin(α/2)= m√Cosα/2Sin(α/2). (Так как 1-2Sin²(α/2)=Cosα по формуле). в) <SHO =arctg(SO/OH) или <SHO=arctg(√Cosα/Sin(α/2)). г) проведем плоскость ВDP, перпендикулярно ребру SC. <POD=90°, по теореме о трех перпендикулярах, так как АС⊥BD. <DPO=arctg(DO/OP). ОР - высота из прямого угла SOC в треугольнике SOC. ОР=SO*OC/SC. OP=(m√Cosα/2Sin(α/2))*(m√2/2)/(m/2Sin(α/2)) = m√(2Cosα)/2. <DPO=arctg((m√2/2)/(m√(2Cosα)/2)) = arctg(1/√Cosα). Треугольник ВPD равнобедренный, поэтому искомый двугранный угол при боковом ребре SС равен 2*<DPO. По формуле tg2α = 2/(ctgα-tgα): tg(<BPD)=2/(ctg(<DPO)-tg(<DPO))=2/(√Cosα-1/√Cosα)=2√Cosα/(Cosα-1).
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{-1;-1;2}, |AB|=√(1+1+4)=√6.
BC{1;-1;0}, |BC|=√(1+1+0)=√2.
CD{1;1;-2},|CD|=√(1+1+2)=√6.
AD{1;-1;0}, |AD|=√(1+1+0)=√2.
Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA.
Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство).
Что и требовалось доказать.
Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}.
Угол α между вектором a и b:
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)].
В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или
CosA=√3/3.