Треугольники подобны по третьему признаку, т.к. их стороны соответственно пропорциональны: 5/10=12/24=18/36. Отсюда коэффициент подобия равен 1/2, тогда отношение площаей треугольников равно квадрату коэффициента подобия, т.е. 1/4.
Рисунок самостоятельно начертишь. 1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике) 2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса) 3) трап АВСД - р/б так как в ней углы при основании АД равны по 60* 4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД. 5) из 3,4 следует, что АВ=ВС=СД 6) Р(АВСД)= 3*АВ+АД=60 (см) 7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*) 8) на основании пп 6,7) получаем: 3*АВ + 2*АВ = 60 ; 5*АВ=60 ; АВ=12 (см)
Радиус окружности, описанной около правильного (равностороннего) треугольника, равен двойному радиусу окружности, вписанной в этот треугольник . R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника