Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²
АК биссектриса Тогда угол ВАК= углу КАД = углу ВКА как внутренние накрест лежащие. Тогда треугольник ВАК равнобедренный, т.к. углы при основании равны. Тогда ВК=12= АВ. В треугольнике ВАД - равнобедренном один угол 60 гр. Тогда треугольник равносторонний. АВ=ВД= АД=12 см. Найдём высоту ромба Это будет высота равностороннего треугольника АВД ВН= 12* sin60=12* корень из 3 и разделить на 2 = 6 корней из 3. Тогда площадь 12* 6 корней из 3=72 корня из 3 кв.см