Две из трёх сторон параллелепипеда образуют квадрат вокруг круглого сечения цилиндра и каждая из них равна диаметру цилиндра, т.е. 4.
Третья сторона равна длине цилиндра, обозначим её как х.
Объём параллелепипеда равен произведению его сторон: V=4*4*x x=V/16=20/16=5/4
Объём цилиндра равен площади сечения на длину V=Pкруга*x Рк=pi*R^2=3.14*4 V=3.14*4*5/4=15.7 - 2ответ
Площадь поверхности цилиндра равна площадь сечения + площадь боковой поверхности: Рц=Рк+Рб Рб=с*х [длина окружности на длину цилиндра] с=pi*D=3.14*4=12.56 Pб=12.56*5/4=15.7 Рц=3.14*4+15.7=28.26 - 1ответ
1)Дано : АВСД -параллелограмм уг. В- ? на 36 гр. меньше уг.А Найти: углы А,В,С,Д Решение: Пусть уг. А - это х, а уг. В - это х-36 , тогда Составим уравнение : Уг. А + уг. В=180 гр. (т.к внутренние односторонние в сумме дают 180 гр.) х+х-36=180 2х-36=180 2х=180+36 2х=216 х=216/2 х=108 ( это уг.А) уг. В= 108-36=72 гр. уг. А = уг.С =108 гр. (по свойству противолежащих углов параллелограмма) уг. В=уг. Д = 72 гр. (по свойству противолежащих углов параллелограмма) 2) Дано: АВСД-параллелограмм Вд-диагональ уг. АВД/СВД=1/2 Найти : ВД Решение : уг.В= 1х+2х=90 3х=90 х=90/3 х=30(это угол СВД) из этого следует что ВД=2СД ВД=24см
Третья сторона равна длине цилиндра, обозначим её как х.
Объём параллелепипеда равен произведению его сторон:
V=4*4*x
x=V/16=20/16=5/4
Объём цилиндра равен площади сечения на длину
V=Pкруга*x
Рк=pi*R^2=3.14*4
V=3.14*4*5/4=15.7 - 2ответ
Площадь поверхности цилиндра равна площадь сечения + площадь боковой поверхности:
Рц=Рк+Рб
Рб=с*х [длина окружности на длину цилиндра]
с=pi*D=3.14*4=12.56
Pб=12.56*5/4=15.7
Рц=3.14*4+15.7=28.26 - 1ответ
Всё!