Два внешних угла треугольника при разных вершинах равны. периметр треугольника равен 74 см ,а одна из сторон 16 см . найдите две другие стороны треугольника . с рисунком треугольника
Уравнение бісектрисі першої координатної чверті у = х. На этой прямой могут быть 2 точки, равноудалённые от точки (5;3) - обозначим её О. Для нахождения координат таких точек решим систему уравнений прямой у = х и окружности с центром в точке (5;3) радиусом √10. у = х (х-5)²+(у-3)² = 10 заменим у на х (х-5)²+(х-3)² = 10 х²-10х+25+х²-6х+9 = 10 приводим подобные: 2х²-16х+24 = 0 сократим на 2: х²-8х+12 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-8)^2-4*1*12=64-4*12=64-48=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-(-8))/(2*1)=(4-(-8))/2=(4+8)/2=12/2=6;x₂=(-√16-(-8))/(2*1)=(-4-(-8))/2=(-4+8)/2=4/2=2.
Получили 2 точки на оси Ох, такие же координаты и на оси Оу, поэтому задача имеет 2 решения:
Если из точки вне окружности к ней проведены касательная и секущая, то квадрат отрезка касательной от этой точки до точки касания равен произведению длин отрезков секущей от этой точки до точек ее пересечения с окружностью. чертеж: нарийсуй окружность, потом, например, слева от окр. точку a, от нее касательную (точку пересеч обозначь b), и из точки a секущую (точки пересечения с окр. обозначь (слева направо) c и d). подпиши над ab: 10-(x+4); над ac: x; cd: x+4; ad: 2x+4. решение: составим уравнение: (10-(x+4))^2=x*(2x+4) (6-x)^2=2x^2+4x; 36-12x+x^2-2x^2-4x=0; x^2+16x-36=0; d=256-4*(-36)=400; корень из d = 20; x = (-16+20)/2=2; 10-(x+4)=6-x=4. ответ: длина касательной 4 см.