Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Биссектриса делит сторону, противолежащую углу, который делит, в отношении прилежащих к этому углу сторон.
Пусть коэффициент этого отношения будет х.
тогда АВ=8х,
ВС=НСх+МNх=4х
Выразим квадрат высоты ВN из прямоугольных треугольников, на которые она делит ∆ АВС.
Из Δ АВN
BN²=АВ²-AN²
Из ∆ BNC
BN²=BC²-NC² ; приравняем эти значения, т.к. они выражают одну и ту же величину.
AB²-AN²=BC²-NC²
АN=AM+MN=9
64х²-81=16х²-9
48х²=72
х²=1,5
Из ∆ ВNC
BN²=16*1,5-9=15
ответ:BN²=15