На стороне ac треугольника авс отмечена точка к так, что ак равна 5 см, кс равна 15 см. найдите площади треугольников авк, свк если ав равна 12 см, вс равна 16 см. полное описание .
Обратим внимание на отношение сторон треугольника АВС. АВ:ВС:АС=3:4:5. Это отношение сторон египетского треугольника. ⇒ ∆ АВС - прямоугольный. Площадь прямоугольного треугольника равна половине произведения его катетов. S ∆ АВС=12*16:2=96 см² Высота из вершины В для треугольников АВК и СВК общая. Отношение площадей треугольников с равной высотой равно отношению их оснований. S ∆ ABC: S ∆ABK=20:5=4⇒ S ∆ ABK=96:4=24 см² S ∆ ABC: S ∆ CBK=20:15=4/3 S ∆ CBK=96:4*3=72 см² или S ∆ CBK=S ∆ ABC - S ∆ ABK=96-24=72 см² ------- Площадь ∆ АВС можно найти по формуле Герона, или предварительно найдя высоту ∆ АВС. В результате решения ответ получим тот же.
Плоскость треугольника ABC проходит через прямую DE, параллельную плоскости α, и пересекает плоскость α по прямой BC, следовательно DE||BC. △ADE подобен △ABC (углы при основаниях равны, т.к. являются соответственными углами при параллельных DE и BC). BD/DA=2/3 <=> DA=(3/2)BDBA=BD+DA = BD+(3/2)BD = (5/2)BDDA/BA = (3/2)BD/(5/2)BD = 3/5 Коэфициент подобия △ADE и △ABC равен отношению соответствующих сторон: k= DПлоскость треугольника ABC проходит через прямую DE, параллельную плоскости α, и пересекает плоскость α по прямой BC, следовательно DE||BC. △ADE подобен △ABC (углы при основаниях равны, т.к. являются соответственными углами при параллельных DE и BC). BD/DA=2/3 <=> DA=(3/2)BDBA=BD+DA = BD+(3/2)BD = (5/2)BDDA/BA = (3/2)BD/(5/2)BD = 3/5 Коэфициент подобия △ADE и △ABC равен отношению соответствующих сторон: k= DA/BA= 3/5 DE/BC=3/5BC= 5*5/3 = 25/3 = 8,33 (см) Не за что!A/BA= 3/5 DE/BC=3/5BC= 5*5/3 = 25/3 = 8,33 (см) Не за что!
Градусная мера острого угла меньше 90°. Все углы, ограниченные соседними лучами, проведенными из одной точки, будут прямыми (равны 90°) тогда, когда таких лучей будет 4, то есть: 360°/90° = 4. Таким образом, чтобы все углы, ограниченные соседними лучами, проведенными из одной точки, были острыми, необходимо, чтобы таких лучей было больше 4. Наименьшее натуральное число, которое больше 4, это 5: 360°/5 = 72°. 72° < 90°. ответ: наименьшее число лучей, проведенных из одной точки так, чтобы все углы, ограниченные соседними лучами, были острыми, равно 5.
АВ:ВС:АС=3:4:5. Это отношение сторон египетского треугольника. ⇒
∆ АВС - прямоугольный.
Площадь прямоугольного треугольника равна половине произведения его катетов.
S ∆ АВС=12*16:2=96 см²
Высота из вершины В для треугольников АВК и СВК общая.
Отношение площадей треугольников с равной высотой равно отношению их оснований.
S ∆ ABC: S ∆ABK=20:5=4⇒
S ∆ ABK=96:4=24 см²
S ∆ ABC: S ∆ CBK=20:15=4/3
S ∆ CBK=96:4*3=72 см²
или
S ∆ CBK=S ∆ ABC - S ∆ ABK=96-24=72 см²
-------
Площадь ∆ АВС можно найти по формуле Герона, или предварительно найдя высоту ∆ АВС. В результате решения ответ получим тот же.