Объяснение:
1)АМ - гипотеза, ВМ-катет против угла 30*,тогда
ВМ=1/2 ВМ=26:2=13
2)<А=90-60=30*,тогда ВМ-катет против угла 30*,ВМ=30:2=15
5)∆АВС - равносторонний, все углы равны и высота является биссектрисой, <МАВ=30*
Расстояние от М до АВ - это перпендикуляр МК к стороне АВ и в ∆МКА МК является катетом против угла 30* и МК=МА:2=8:2=4
6) кратчайшее расстояние от М до АВ - это высота из вершины М.
∆АВМ прямоугольный, равнобедренный и высота МН является медианой. Тогда по свойству медианы прямоугольного треугольника МН=8:2=4
А - центр большей окружности,
угол А=60º
Н -точке касания вписанной в сектор окружности с дугой.
ВС - касательная к точке H.
∠АНС=∠ВНС=90º
Центр вписанной в угол окружности лежит на его биссектрисе.
АН- биссектриса∠ВАС
∠ВАН=САН=30º
∆ ВАН= ∆ САН
∠АВС=∠АСВ=60º
∆ АВС - равносторонний с высотой АН=R=4 см
Радиус r вписанной в правильный треугольник окружности равен 1/3 её высоты.
r =4/3 см
Ѕ=πr²=(4/3)² π=16/9π см²