1) CN=CD/2=BC => △BCN - равнобедренный, углы при основании равны, ∠CBN=∠CNB
∠ABN=∠CNB (накрест лежащие при AB||CD)
∠ABN=∠CBN, BN - биссектриса ∠ABC (делит угол на два равных)
2) Площади треугольников с равной высотой относятся как их основания. Обозначим площади ABK=8x, AKM=MKC=5x, ACK=10x. Площади треугольников с равным основанием относятся как их высоты. Высоты треугольников ABK и ACK относятся как 8:10. Следовательно площади BKP и CKP относятся как 8:10. Обозначим площади BKP=8y, BKC=18y. Площади BKC и MKC относятся как 8:5.
S(BKC)/S(MKC) =18y/5x =8/5
S(BKP)/S(AKM) =8y/5x =8/5 * 4/9 =32/45
Или по теореме Менелая:
CP/PB *BK/KM *MA/AC =1 <=> CP/PB *8/5 *1/2 =1 <=> CP/PB=10/8
CM/MA *AK/KP *PB/BC =1 <=> AK/KP *8/18 =1 <=> AK/KP=18/8
Площади треугольников с равным углом относятся как произведения сторон, заключающих равные углы.
S(BKP)/S(AKM) =BK*KP/AK*KM =8/5 *8/18 =32/45
Духовные оды Ломоносова по праву признаются наиболее совершенными в художественном отношении поэтическими произведениями писателя. Медная крепость их стиля удивительно гармонирует с грандиозностью рисуемых образов. В дальнейшем не раз русская литература вновь и вновь обращалась к духовным проблемам, создавая высочайшие художественные творения, которые принесли ей мировую славу. В конце XVIII века дело Ломоносова продолжил Державин, а затем в поэзии XIX века натурфилософская поэзия Тютчева наследует традиции ломоносовских духовных од, особенно в создании картин ночного пейзажа. Конечно, классицизм с его строгим делением на стили и жанры безвозвратно ушел в оды, столь популярные среди писателей этого литературного направления, сменились другими стихотворными жанрами. Но сам накал духовного искания, выраженный в возвышенных художественных образах, связанных с библейской первоосновой, не мог исчерпать себя. В русской литературе он отразился в той ее пророческой ветви, которая дала нам незабываемых «Пророков» Пушкина и Лермонтова, навсегда связавших воедино в русской литературе имя Поэта с высокой миссией Пророка.
Объяснение:
Т.к. треугольник прямоугольный, а один из углов равен 60 градусов, то третий угол равен 30 градусов. Нам известно, что в прямоуг. треугольнике напротив угла в 30 градусов лежит кает, в половину меньший гипотенузы, следовательно, второй катет = С/2. Третий катет обозначим за Х. По теореме Пифагора получается Св квадрате = Св квадрате/4 + Хв квадрате. выразим Х. Хв кв. = Св кв. - Св кв/4. производим сокращение и получаем ответ :)