Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
;
от точки A
;
в обе возможные стороны
перпендикулярен вектору основания
, а значит его проекции накрест-пропорциональны с противоположным знаком:
, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться:
(II) ;
пропорционален вектору
, поскольку для вектора
выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора
;
имеет длину
;
, т.к
;
, а стало быть
;
.
/// примечание:
;
/// примечание:
.
<A+<C+<B=180°
x+x+(x+30°)=180°
3x=150°
x=50°
ответ: <A=50°, <C=50°, <B=80°
2. <B=x°
<A=<C=x+30°
A<+<B+<C=180°
(x+30)+x+(x+30)=180°
3x=120°, x=40°
ответ: <B=40°, <A=70°, <C=70°