такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
В треугольнике АВС угол С прямой,
∆АВС -прямоугольный
расстояние от точки В до плоскости АСМ. - это катет ВС = АС*tg30 =18*tg30 =6√3 см
гипотенуза ∆АВС AB =√ (AC^2+BC^2)=√ (18^2+(6√3)^2)=12√3 см
высота из вершины С на сторону АВ h =AC*BC / AB =18*6√3 /12√3 = 9 см
расстояние от точки М до прямой АВ H = √ (h^2+CM^2) = √ (9^2 +12^2) = 15 см