М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vavilina000
vavilina000
05.05.2023 15:33 •  Геометрия

Углы, образованные при пересечении двух прямых

👇
Ответ:
Yunusovaliana20
Yunusovaliana20
05.05.2023
На картинке указаны все возможные углы!
Углы, образованные при пересечении двух прямых
4,7(48 оценок)
Открыть все ответы
Ответ:

1. От точки А строим угол, равный данному (описано в первом

варианте) и на полученной второй его стороне откладываем отрезок

АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на

прямую "а". Для этого:

Из точки В проводим окружность любого радиуса R, чтобы пересекла

прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим

две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.

На пересечении прямых ВМ и "а" ставим точку С.

Соединяем точки А,В и С и получаем прямоугольный треугольник АВС

с прямым углом <C и с заданными гипотенузой и острым углом.

2.  На прямой  "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ  соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.

3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.

Соединив точки А,С и В получаем искомый треугольник.

P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.

4,4(14 оценок)
Ответ:
gyukk
gyukk
05.05.2023
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
  
Полная площадь призмы равна сумме площадей двух оснований и   площади боковой поверхности.  
 Пусть ребро призмы равно а.   
 Грани - квадраты, их 3.   
 S бок=3а²   
S двух осн.=( 2 а²√3):4=( а²√3):2 
 По условию  
 3а²+(а²√3):2=8+16√3   
Умножим  обе стороны уравнения на 2 и вынесем а² за скобки:     а²(6+√3)=16+32√3)=16(1+2√3)    
  а²=16(1+2√3):(6+√3)   
Подставим значение  а² в формулу площади правильного треугольника:   
 S=[16*(1+2√3):(6+√3)]*√3:4  
 S=4(√3+6):(6+√3)=4 (ед. площади)
 
 Думаю, решение понятно.  Перенести решение на листок для Вас не составит труда.
4,4(70 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ