1. ВС - малое основание. Тр-ки ВОС и DOE подобны, ВС/ВО = DE/DO; ВС = 12*3/9 = 4
2. ВР - биссектриса, угол АВР = угол СВР, но угол СВР = угол ВРА => тр-к АВР равнобедренный, АВ = ВР = 10; аналогично DP = CD = 10; AD = 20;
периметр (10 + 20)*2 = 60; (интересно в этой простенькой задачке то, что сторону вычислить можно, а углы - нет: подходит любой параллелограмм, у которого одна сторона в 2 раза больше другой).
3. Пусть равнобедренная трапеция АВСЕ, АЕ II ВС; ВН - высота,
ВЕ = √65; BH = 4; HE = √(65 - 16) = √49 = 7;
При этом ЕА = (АЕ - ВС)/2; поэтому НЕ = АЕ - (АЕ -ВС)/2 = (АЕ + ВС)/2;
S = BH*(АЕ + ВС)/2 = 4*7 = 28;
Пусть дан треугольник АВС, у которого АВ=2см, ВС=4см, АС=3см. Проведем биссектрисы AF, BK, CE, которые пересекаются в точке О. По свойству биссетрисы треугольника : биссектриса делит противолежащую сторону треугольника на отрезки пропорциональные двум другим сторонам.
Рассмотрим биссетрису ВК, применяя описанное свойство, имеем:
АК:КС=АВ:ВС
АК:КС=2:4=1:2
Значит сторона АС состоит из 1+2=3 равных части. А так как АС=3 см, то одна часть составляет 1см, то АК=1 см, КС=2см.
Рассмотрим треугольник ВСК, в нем СО - биссетриса.Используя тоже свойство, получим:
ВО:КО=ВС:СК
ВО:КО=4:2=2:1
Значит точка О делит биссектрису, проведенную из точки В в отношении 2:1